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Motivation

e Short answer assessment systems have been developed for a range of
purposes, on various data sources, employing different techniques.

e While clearly related, many approaches remain isolated.

e We sketch the landscape of short answer assessment, characterizing
existing systems and their properties.

e In order to foster development and to connect research strands, more
data sets and systems should be made available.

e Comparing two concrete systems on an available data set, we explore the
issues involved in comparing such diverse systems in general.

Comparability of Approaches & Datasets

Datasets

e For results to be reproducible and to support serious system comparison,
datasets must be publicly available. However, data sets also differ in

— data source: reading comprehension task in language learning,
tutoring system, automated grading of exams

— language properties: native vs. learner language, domain-specific
language (e.g., computer science)

— assessment scheme: nominal vs. interval scale

= For meaningful comparison, data availability combined with explicit
modeling of its source, properties, and classification scheme are crucial.

Evaluation Metrics

e Scoring systems are often evaluated using a pairwise correlation metric,
whereas meaning comparison is associated with accuracy.

— However, such correlation metrics assume a normal distribution
and many datasets are biased towards correct answers.
— Correlation generally suffers from low variance in gold ratings.
e Mohler et al. (2011) suggest RMSE as a remedy to capture a system’s
average error in scoring.
— But RMSE is dependent on task and scale and thus does not support
comparing studies differing in these aspects.
= Best to report multiple measures.

Gold Standard Ratings
e Low agreement for the two graders of Texas corpus (Mohler et al., 2011):

— Pearson correlation (r) = 0.586
— Root Mean Square Error (RMSE) = 0.659

e Should responses without perfect agreement be used in training and
testing systems?
— In other approaches, disagreements are resolved or the respective
instances left out, cf., e.g., Beigman Klebanov & Beigman (2009).

— Inthe Texas corpus, Mohler et al. (2011) opted to use the arithmetic
mean of two raters as gold standard.
But: Arithmetic mean is only reliable when using many raters.

= Meaningfulness of a gold standard for a task that humans cannot reliably
perform needs attention. Can the task or the guidelines be improved?
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The Short Answer Assessment Landscape

- Students answering comprehension questions
- Read texts and questions determine contents of answers
* Free text, but shorter than essays, mostly only one topic per answer
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Comparing two Concrete Systems

Data (Mohler, Bunescu & Mihalcea, 2011)
e Corpus of 10 assignments and 2 exams from introductory CS class
e 2,442 student responses to 87 questions in total

— avg. response length 18.4 tokens
e Each response rated by two human raters on 0-5 scale

— exact grader agreement: 57.7%
— gold standard created by averaging between raters
e Score distribution: Mean T = 4.19, and Std. Deviation s = 1.11

Approaches
e Texas system (Mohler, Bunescu & Mihalcea, 2011)

— Scoring system, using interval scale

— Two components: Dependency Graph Alignment and Bag-of-word
measures (e.g., LSA, tfxidf)

— SVR/SVMRank produces final numeric outcome based on features
from the two components

e CoMiC-EN (Meurers, Ziai, Ott & Bailey, 2011a)

— Meaning comparison system, using nominal scale
— Annotation phase enriches input with linguistic information.

— Alignment uses linguistic information to create mappings between
student and target responses.

— Classification (TiMBL) identifies meaning equivalence or nature of
divergence from target based on 13 features from Alignment.

Evaluation
e CoMiC-EN not designed to perform scoring with numeric scales

= Switch ML component from Memory-Based Learning to Support
Vector Regression (SVR) using same feature set
e Setup as described by Mohler et al. (2011): 12-fold cross-validation
SVR with linear kernel and tuned parameters based on training set

e Result: Texas system performs better on its own data

Pearson Correlation | Root Mean Square Error
Mohler et al. (2011) 0.518 0.978
CoMiC-EN with SVR 0.405 1.016
Median Baseline 1.375
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