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Abstract

This thesis explores a variety of text difficulty measures in the
context of language learning and Information Retrieval. The
possibilities of fast and straightforward retrieval of general infor-
mation as well as of reading material at the language proficiency
level of a learner are examined on the basis of a prototypical
search engine implementation. In a preliminary evaluation ex-
periment we found two of nine traditional readability formulas
to be promising candidates for classifying texts gained from the
Web into levels of text difficulty. In addition, the use of Lexical
Frequency Profiles as indicators for vocabulary load appears to be
promising as well. Having shown the general track to follow in
order to retrieve information and reading at the learner’s level, we
suggest future work to investigate the mapping of the discussed
difficulty measures to a well-established system of representing
language proficiency, such as the system of Common European
Framework.

Zusammenfassung

Die vorgestellte Arbeit untersucht eine Auswahl an Messinstru-
menten fiir die Schwierigkeit von Texten im Kontext des Sprachen-
lernens und des Information Retrieval. Die Moglichkeiten des
schnellen und einfachen Retrieval sowohl von generellen Infor-
mationen als auch von Lesematerialien auf dem sprachlichen
Niveau einer Lernerin oder eines Lerners werden auf der Basis
eines Suchmaschinen-Prototyps untersucht. In einem vorldufigen
Experiment zur Evaluierung stellten sich zwei von neun tradi-
tionellen Lesbarkeitsindicies als vielversprechende Kandidaten
tir die Klassifizierung von Texten aus dem World Wide Web in
Schwierigkeitsstufen heraus. Des Weiteren zeigten sich als Indika-
toren fiir den verlangten Wortschatz benutzte Lexical Frequency
Profiles als ein vielversprechendes Instrument. Der Weg zum
Retrieval von Information und Lesematerial mit einem dem Ler-
nenden angepassten Sprachniveau wird aufgezeigt. Als Thema
zukiinftiger Untersuchungen schlagen wir die Beziehung zwis-
chen den vorgestellten Messinstrumenten und den Stufen eines
etablierten Systems zur Reprdsentation sprachlichen Niveaus wie
dem System des Gemeinsamen Europdischen Referenzrahmens
VOr.






“I'm sorry Dave, I'm afraid I can’t do that.”

—HAL 9000 in 2001: A Space Odyssey
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1 Introduction

In a world of globalization where borders are slowly crumbling and where infor-
mation has become available at the click of a button, the ability to communicate
in an international environment becomes more and more important. As physical
barriers disappear, language barriers are becoming more apparent. Therefore
language learning and teaching is likely to play an even more prominent role in
the future, both as a market and as an element of culture.

People learning a language naturally exhibit a wide variety in their abilities.
For those learning a language by instruction, their proficiency is known in terms
of their level acquired in language courses. It takes long to study enough to
be able to understand every text in a foreign language. There are two issues
resulting from this: 1) language learners have only limited access to information
from modern sources such as the World Wide Web since the comprehensibility
of the materials is not guaranteed. 2) There is an increasing need of exciting,
appropriate, and up-to-date reading materials in language teaching.

Information at the learner’s level is required. For retrieving information,
the scientific field of Information Retrieval (IR) has led to the development of
successful search engines such as Google!. Let aside the issues of information
monopoly, the way of retrieving information and extending knowledge has
changed dramatically since the rise of AltaVista?, the first popular Web search
engine. Yet there is still no guarantee that the documents retrieved are actually
understandable to the users. From all those documents available on a topic, only
those fitting the proficiency of the user or learner are of interest.

In the presented thesis, we will explore possible means to identify the reading
difficulty of English texts in general, yet with a strict focus on language learning
and Information Retrieval. The results of the presented work are based on insights
gained from the implementation of a prototype search engine which we developed.
This prototype system uses various methods for assessing text difficulty. The
users can specify a level of language proficiency in the query module, allowing
them not only to satisfy their information needs but also to find material that is
readable to them.

For assessing text difficulty, we will discuss and explore the most prominent
traditional readability formulas. These formulas usually are based on surface
indicators such as average word and sentence length as well as the amount of
long or complex words. For each text, they compute a single number putting the
difficulty on a scale. Furthermore, we will investigate Lexical Frequency Profiles,

1http://www.google.com
Zhttp://www.altavista.com
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a statistical means of judging on learner vocabulary introduced by Laufer and
Nation (1995), and their application as indicators for readability. An outlook
on other promising measures, particularly those of syntactic complexity, will be
given.

After an introductory chapter on the mechanics of modern Information Re-
trieval, we will present an approach for combining text difficulty assessment
with search engine technology. Subsequently we will show that this approach
can be implemented using state of the art technology from the fields of Natural
Language Processing and Information Retrieval. We will furthermore discuss the
possibilities of evaluating such a system as a whole. In a first statistical glance at a
test collection of almost 200,000 unique documents, we will present a comparison
of the various techniques used for automatically assessing text difficulty.

Having placed the presented thesis in the landscape of related work, we will
attend to possible routes of further research, before we will eventually reach the
summarizing conclusions.

12



2 Text Difficulty and Readability
Measures

In order to deliver information at the learner’s level, one must first of all be
able to judge the reading difficulty of the information that is available. In this
chapter, we introduce the concept of readability. Furthermore we present
and discuss traditional readability formulas as well as the application of Lex-
ical Frequency Profiles for assessing readability.

2.1 About Readability

Readability is a term commonly used to denote legibility of handwriting or typo-
graphy, ease or pleasantness of reading, or to refer to the understandability and
comprehensibility of a text. In readability research, only the latter meaning of the
word is dealt with: the criteria making texts easy or hard to grasp (Klare, 1963,
p- 1). Text difficulty can be seen as a synonym to readability.

From the reader’s perspective, reading proficiency is the corresponding concept.
The more proficient in reading somebody is, the less readable texts need to be
in order to be understood. Unfortunately, the properties of readers and texts
that define their position on the scales of proficiency and readability are not very
clear-cut.

Klare (1963, ch. 1)1 states that writers should fit their style of writing to the
reader in order to produce readable text. Gunning (1968, p. 10) advises: “Don’t
write up. Don’t write down. Write fo.” What writers can find out about their
readers are according to Klare three pieces of information. If the writer adjusts
to these three criteria, the text will be readable: 1) the text fits the reader’s
educational level 2) the reader has a strong motivation to ‘conquer’ the text, e.g.
because he or she has a strong interest in the conveyed information, and 3) the
reader has a strong background in the topic of the text. Two of these three points
put the reader in the first place. Readability is defined via understanding and
comprehension, two activities taking place in the reader’s mind, not in the text
itself.

The Common European Framework of Reference for Languages (CEF) uses so
called illustrative descriptors to define language proficiency in general (Council
of Europe, 2001; see section 4.2.2). These descriptors define levels from A to
C, each divided into two sub-levels (A1, A2). All descriptors are given in task-
dependent ‘can-do lists”. These definitions mix social skills with purely linguistic

1Reprin’ced in Klare (2000a)
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ones. Canada participated in the International Adult Literacy Survey (IALS). This
survey specifies Literacy Levels from 1 to 4 that are defined by what people at a
certain level can do or cannot do in order to “function in our society” (Evetts and
Gauthier, 2005, p. 13). Turned upside down, these task-based definitions describe
what skills a text is allowed to demand from the addressed audience in order to
be still readable.

To conclude: readability describes how well a text fits the reader’s abilities.

2.2 Readability Measures

2.2.1 Introduction

Readability measures, also referred to as readability formulas or readability yardsticks,
aim to assign a single index of difficulty to a given text. Many of these measures
use the U.S. grade level scale. DuBay (2004, p. 7) claims that “the grade of
completed education is no indication of one’s reading level.” It is likely that
in the early days of readability measures, scholars thought of grade levels as
indicators for the reading proficiency school students had at a certain grade in
school. Meanwhile, grade levels seem to exist as a readability scale irrespective of
a given educational system.

As previously stated in section 2.1, the properties of readable text are not clear-
cut. How readable a text is depends on both the reader and the text. However, if
one is to measure the readability of a given text, no readers are available. This
leaves us with the properties of the text. Which of those to look at is a re-occurring
question to be answered in the following sections. There is no such thing as a
comprehensive measure of readability.

Methods of measuring readability range from scratching the text’s surface down
to a deeper analysis. Most formulas rely on the relatively simple counting of
sentences, words, and syllables. The ratios of these variables serve as proxies for
an underlying complexity that cannot be touched directly. The vocabulary used
in a text is another surface property that can be mastered by simple means. More
complex analyses are inferred from the surface and include sentence structure such
as counting prepositional or coordination phrases. The diversity of supposedly
good indicators led to the development of a very large number of formulas, each
putting the focus on a different spot, some being updates to earlier versions. Klare
(1963) described 31 formulas, aiming to provide a complete overview. In 1981,
over 200 formulas had been invented already (DuBay, 2004, p. 19).

Readability measures are designed with three main principles: 1) they are to
yield results as accurate as possible 2) they are to fit a given usage scenario, such
as a specific audience or text type 3) they must be easy and comfortable to use.
The first principle is approached by conducting reading comprehension tests after
subjects have read different texts. The formula then emerges from a regression
equation matching the variables (such as sentence length or syllable count) to the
text difficulty assessed via the human performance (Klare, 1963, ch. 3). The second

14



principle can be adjusted to by the choice of texts and subjects. The third principle
was of major importance in the pre-computer age. Nowadays, computers perform
cumbersome repetitive tasks, however with less linguistic competence. The
necessary ‘modern interpretation” of the old formulas is discussed in section 5.4.

Readability measures are a statistical means to infer text difficulty from clues
mostly found on the surface of the text.

As noted above, a vast number of measures has been developed so far. This
raises the question of which one might be the best one to use. Commenting
on his 1963 book, Klare (2000b) presents a detailed list on the features of “the
better readability formulas.” A brief summary: good formulas combine counts
of several indices such as word and sentence variables. They apply to connected
discourse and they disregard format or layout of text.> They produce an indicator
for reading difficulty, usually expressed in grade levels. However, they do not
express anything about good or bad style of writing. Furthermore, good formulas
require large samples or the analysis of the entire text in question.

In the pre-computer age, formulas imposing few workload on users were
preferred. Nowadays, it appears natural to prefer formulas that yield good
results when applied by diligent but linguistically less competent computer
programs. The choice of measures in the presented work focuses on these three
properties: 1) the formulas must be implementable in a computer program using
well-established NLP technology. 2) they must be regarded as well-behaving in
the field of readability. 3) there must be a diversity in the variables being used in
the formulas. The latter point is important because different variables require
different linguistic analyses. The diversity of variables gives us the chance to
level out weaknesses of the different algorithms in use. (A systematic overview of
measures and analyses is given in table A.1 on page 81.)

2.2.2 The Original Dale-Chall Score

“Over the years since it was published, the original Dale-Chall formula proved the
most predictive of the wide-range readability formulas.” (Klare, 2000b). Apart
from being widely used and regarded well-behaved, this formula introduced by
Dale and Chall (1948a) is also a good example for a word list-based readability
measure. Their work strengthens the notion and use of hard words versus easy
words. This distinction is a re-occurring pattern in later measures such as the
Gunning Fog Index (Gunning, 1968; discussed in section 2.2.5).

Dale and Chall combine a list of easy words and the average sentence length
into the following formula:

2We excluded the format or layout of text from the definition of readability in section 2.1. These
criteria rather reflect legibility. However, a few formulas do not make this clear distinction.
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Dale-Chall = 0.1579 - DS 4+ 0.0496 - ASL + 3.6365
Where

DS = Dale Score The percentage of words outside the Dale
list of 3000 words.

___ Number of Words
ASL = Number of Sentences

Average sentence length.

The word list of (almost) 3000 easy or familiar words was produced “by testing
fourth-graders on their knowledge in reading of a list of approximately ten
thousand words” (Dale and Chall, 1948a). The intended use of the word list and
the list itself are given in Dale and Chall (1948b). The latter paper also shows that
the list is a mixture of a lemma list and a full-form list: it simply contains both. A
concise set of rules covers almost four pages of the publication. They cover all
linguistic interpretations that must be done in applying the formula. Contractions
and hyphenated words are counted as one word. For example, all words found
directly on the list are considered familiar. The same holds for all numbers.
Comparatives and superlatives are considered familiar, if the adjective they are
derived from is found on the list. Irregular forms in general are unfamiliar unless
they are present as full forms on the list.

The motivation for using a word list is the vocabulary load imposed on readers.
Flesch (1943) finds the use of a word list undesirable, arguing that it does not
only represent reading proficiency but also the living experience of the reader. He
writes that a measure of abstractness should be the indicator of choice instead
of vocabulary load. Hence he prefers the count of affixes in the words as an
indicator of abstractness, claiming that words with more affixes are more abstract.
Dale and Chall (1948a) respond to the argument by presenting the large list of
3000 words, accompanied with the claim that vocabulary load, abstract words,
affix morphemes, or the number of uncommon words are all interrelated. Their
conclusion is that the lookup of words on the list of 3000 is less cumbersome than
counting affixes.

The values computed by this formula can be mapped to the grade level scale of
grade four (values below 4.9) to grade 16 and above (values of ten and above).

2.2.3 Flesch Reading Ease

The Flesch Reading Ease perhaps is the most popular measure. “[...] it has
become the most frequently used of all readability formulas.” (Klare, 1963, p. 59).
It is based on previous work conducted in Flesch’s dissertation which is based on
counting affixes (as an indicator of abstract words), sentence length, and personal
references (Flesch, 1943). Updating his old formula, Flesch (1948) moves the
personal references issue to a separate formula which he calls human interest.
The nowadays-popular part however is what he calls reading ease. This formula
also abandons the use of affixes and replaces them by a syllable count. Flesch

16



claims that “the measurement of word length is indirectly a measurement of word
complexity”, giving a correlation of complexity and word length measured in
syllables of r = 0.87.

Reading Ease = 206.356 — 84.6 - AWL; — 1.015- ASL
Where

__ Number of Syllables
AWLs = Number of Words

Average word length counted in sylla-
bles.?

___ Number of Words
ASL = umber of Sentercss  AAverage sentence length.

The formula is based on a reading test conducted with children. The same
data had been used for Flesch’s old formula. He reports that “the grade level of
children answering test question is not the best criterion for general readability”.
However, no better data were available back then, so he had to use them regardless
of the concerns. The Flesch Reading Ease yields numbers from 0 to 100, expressing
the range from “very difficult” to “very easy”. It is meant to be used for measuring
the readability of texts addressed to adult language users.

Flesch defeats the use of word lists (such as in Dale-Chall Score, section 2.2.2)
in his dissertation, arguing that they would predict the words unfamiliar to the
individual reader rather instead of the abstractness or complexity of words (Flesch,
1943, p. 15). However, Zipf (1936, ch. 2) had already observed the relation of word
length and word frequency in a corpus before. One can say that the word length
variable in the Flesch Reading Ease is also an indicator for word frequency. It is
unclear to what extend Flesch was aware of this fact.*

2.2.4 Flesch-Kincaid

The Flesch-Kincaid measure is described by Kincaid et al. (1975). It uses the
same analyses as the Flesch Reading Ease. The achievement of the Flesch-Kincaid
measure is that it maps the Reading Ease to the U.S. grade level scale. The formula
is stated as follows:

Flesch-Kincaid = —15.59 +11.8- AWL; 4+ 0.39 - ASL
Where

AWL. — Number of Syllables

s = Numberofwords.  Average word length counted in syllables.

___ Number of Words
ASL = [umber of Sentonces  AAverage sentence length.

3Flesch (1948) uses “syllables per 100 words” instead of average word length. Consequently, his
factor is 0.846 instead of 84.6

“Flesch (1943, p. 23) does cite Zipf (1936), but only for his hypothesis that language development
tends to shorten often-used words, not for the relation of word length and word frequency.
Flesch (1948) makes no reference to Zipf.
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2.2.5 Gunning Fog Index

Gunning (1968) claims that the average sentence length and the portion of familiar
words are the “most helpful” factors for computing a readability index. He finds
the formula by Dale and Chall useful but too tedious to apply as it is based on a
word list. Concerning the Reading Ease formula by Flesch, he finds the counting
of all syllables of all words tedious as well. His solution is to count the hard words,
which he defines as those words having three or more syllables. The argument is
that those are easy to spot. The formula itself is given in natural language. We
present a version translated to a mathematical representation:

Fog Index = 0.4 - (ASL 4100 - RHW)

Where
RHW = Nuﬁ‘ggb‘éfr gf{,%o‘r/gfds Ratio of hard words to all words.

___ Number of Words
ASL = Number of Sentences

Average sentence length.

There are several exceptions for words with three or more syllables that are not
hard words: proper names are always easy words. Compounds written together
such as manpower must be split and their single components must be analyzed
instead. Inflectional endings of verbs are not counted as syllables (Gunning, 1968,
p. 38).

The Gunning Fog Index yields numbers that are supposed to correspond to
the grade-level scale directly. Gunning draws a “danger line” between level 12
and 13. Beyond this line, any writing “runs the danger of being ignored or
misunderstood”. The formula is based on a regression equation that fits sentence
length and the proportion of hard words to grade levels assessed in a reading test
similar to the one used in development of the Flesch formulas.

2.2.6 Simple Measure of Gobbledygook

The Simple Measure of Gobbledygook (SMOG) is described in McLaughlin
(1969).° He agrees with previous works such as Flesch (1948) that sentence
length and word length have great predictive power for measuring readability.
While the traditional formulas add a variable of word length to a variable of
sentence length, McLaughlin is of the opinion that the two should be multiplied
as they interact linguistically. For the counting of word length, he refers to the
technique of counting polysyllabic words that had been introduced by Gunning
for the Gunning Fog Index (section 2.2.5), arguing that it makes the analysis less

5McLaughlin (1969) refers to the name SMOG as being a tribute to Gunning’s Fog Index (see
section 2.2.5) and a reference to the weather phenomenon first spotted in London. The
long version Simple Measure of Gobbledygook appears on McLaughlin’s web page: http:
//www.harrymclaughlin.com/SMOG.htm)
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laborious than the full syllable counting that is mandatory for the Reading Ease
by Flesch (section 2.2.3).

McLaughlin states that the sampling of 100 words from a text as required by
earlier readability formulas is not accurate enough. Instead, he suggests to use a
sample of 30 sentences, which “typically cover 600 words”. When transformed to
a formula that operates on the number of polysyllabic words per sentence, his
formula can be expressed as follows:

Grade Level = 3.1291 4+ 1.0430 - v30 - RPS
Where

Number of Polysyllabic Words

RPS = Number of Sentences

Similarly to the other works discussed in previous sections, McLaughlin used
data from a reading test to adjust his regression equation in order to produce
numbers of the U.S. grade level scale.

2.2.7 Lasbarhetsindex

While originally introduced by Bjornsson (1968a), the following description of
Lasbarhetsindex (LIX) is based on Jakobsen (1971), since we were unable to get
hold of the original publication. The readability measures is given in natural
language. Translated to a formula, it can be given as follows:

LIX =100- RLW + ASL
Where

__ Number of Long Words .
RIW = —fumber of Words Ratio of long words to all words.

ASL = Number of Words

6
Number of Sentences Average sentence length.

Long words in the LIX sense are words with a length of more than six characters.
Jakobsen (1971) describes many exceptions to be taken care of in the application
of the formula. A number of text elements such as headings, the table of contents,
phrases introducing direct speech, long citations—just to name a few—should
be simply ignored. The rules for numbers seem to be even more sophisticated.
Numbers being short or long words basically depends on the pronunciation which
of course widely differs from phone numbers over dates to regular numbers.

®Jakobsen (1971, p. 16) advises to use “den gennemsnitlige meningsleendge, d.v.s. punktum-
leendge” (‘the average meaning length, resp. length of text between punctuation’). The German
version of Bjornsson’s original publication (Bjérnsson, 1968b) refers to the very same concept
as average sentence count.
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Abbreviations are to be treated likewise, for example USA is supposed to be
spoken and counted like three short words.

Even though LIX had originally been developed for Swedish, it is used in the
very same form for English, too. Bjornsson (1968b) discusses the application of
the formula to Swedish and German. His finding is that scores computed for
German are generally higher, but comparable. Hence the formula is language
independent, but the interpretation of the scores varies. For Swedish, LIX values
range from around 20 (very easy) to above 70 (very difficult).

Scores for English should be different but correlating.

2.2.8 Automated Readability Index

The Automated Readability Index (ARI) introduced by Smith and Senter (1967)
represents an early approach of computing a readability score automatically.
Smith and Senter conducted an experiment in which college students were to
count syllables in textbook passages. They report a 10% variation in syllable
counts among the 65 subjects. Their conclusion from the experiment is that
readability score computed by a machine is more reliable. They constructed a
‘readability measurement device’, which was based on an electric typewriter that
had been equipped with electro-mechanical counters for counting the number of
key strokes, the number of words (space bar hits) and the number of sentences
typed in. The latter had to be triggered manually by the typist by typing the
equal sign.

From a sample of words with one to five syllables, Smith and Senter computed
the average length of the words in characters. Their device could of course count
only key strokes, a linguistic analysis such as counting syllables was not feasible.
They present the following formula as the result of their studies:

Grade Level = 0.50- ASL +4.71- AWL, —21.43
Where

AWL, = Nﬁﬁ; e‘f (%‘j,garfitsers Average word length counted in charac-
ters.”

___ Number of Words
ASL = Number of Sentences

Average sentence length.

The formula was created by analyzing data obtained from 24 books. The grade
levels of the books had been specified either by the Cincinnati School System or
the publishers. The numbers computed with the formula again are supposed to
reflect the U.S. grade level scale. Since the books used in development ranged
from grade levels 1 to 7 only, it is questionable how reliable the results of the
formula may be for materials of higher levels.

’Smith and Senter (1967) use the expression “strokes per word”, referring to key strokes on a
type writer. In deed, they count all strokes, including punctuation and numbers.
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2.2.9 Coleman-Liau Index

This Coleman-Liau Index is described in Coleman and Liau (1975). Like the
Automated Readability Index, it has been designed for automated use. Coleman
and Liau state that the typing of punch cards is too tedious and more expensive
than manual counting. Consequently, they suggest the use of an optical scanner
that examines the printed text for periods, resulting in everything between pe-
riods being a sentence. Luckily, the situation has changed with the evolution of
technology.

The measure is based on an estimate of correctly filled-in blanks in a cloze test.
Coleman and Liau base their work on the analysis of 2,400 cloze responses by
subjects for 36 150-word text passages. The cloze responses can be mapped to the
grade level of the text. A first formula estimates the percentage of correct cloze
answers from sentence length and word length. A second formula relates these
“estimated cloze %" to U.S. grade levels. Coleman and Liau give the two formulas
as follows:

Estimated cloze % = 141.8401 — 0.214590- L + 1.079812 - S

Grade level = —27.4004 - Estimated cloze % -+ 23.06395

Where
L = The number of letters per 100 words.
S = The number of sentences per 100 words.

It turns out that if one inserts the formula for the “estimated cloze %" in the
grade level formula, the result is not plausible because it yields numbers below
-3800. We found that in the grade level formula, what Coleman and Liau must
have had in mind is the ratio of correct answers, that is the percentage divided by
100. After this little correction, the formula can be represented as follows:

Grade level = —0.2959 - S 4- 0.0588 - L — 15.8007
Or, with S and L adjusted to samples of arbitrary size:
Grade level = —29.5873 - SPW + 5.8799 - AWL, — 15.8007
Where

__ Number of Characters : _
AWL: = “[imber ofWords . Average word length counted in charac

ters.8

SPW = Number of Sentences

Number of Words ~ Number of sentences per word.
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The specification of the formula as given by Coleman and Liau has led to some
confusion in the past. For example, McCallum and Peterson (1982) confused
the number of sentences per word with the average sentence length in words.
The formula used in older versions of the GNU style program for computing
readability scores is wrong in a different way.” Other publications may be wrong
in other ways. Therefore we use the formula as given above throughout the
presented thesis.

2.2.10 FORCAST

The FORCAST! formula is described by Caylor et al. (1973). Its primary design
goal is to predict the readability of job reading material as used by the U.S. Army.
The targeted reading audience consists of young adult males. Using regression
analysis on the values of cloze tests, Caylor et al. came up with a simple formula
that includes the number of monosyllabic words in a 150 words sample as the
only variable. Adjusted to arbitrary sample size, the formula is the following:

FORCAST =20 —15- RMW
Where

__ Number of Monosyllabic Words
RMW = Number of Words

Like previously presented formulas, FORCAST is supposed to yield numbers
on the U.S. grade level scale. This formula apparently is not very wide-spread in
use. We chose to include it since its results are independent of sentence length.

2.3 Lexical Frequency Profiles

2.3.1 Properties of Lexical Frequency Profiles

Lexical Frequency Profiles (LFPs) were introduced by Laufer and Nation (1995).
Since they do not boil down a piece of text to a single number, they cannot
be counted towards the pure readability measures discussed in the preceding
sections. Furthermore, they are originally not applied to text for the reader but to
text by the language learner. Laufer and Nation define LFPs as follows:

8Coleman and Liau (1975) use the term letters instead of characters. Even though they do not
specify it more precisely, it can be assumed that the refer to the characters contained in words
only.

9 At least version 0.7 of style is affected. Version 1.11 use the correct formula. The tool is available
from http://ftp.gnu.org/gnu/diction/

I0OFORCAST is named after three of the authors that introduced it: Ford, Caylor, and Sticht.
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“The LFP shows the percentage of words a learner uses at different
vocabulary frequency levels in her writing—or, put differently, the
relative proportion of words from different frequency levels.”

This definition clearly states that LFPs are not a readability measure but a measure
of the active vocabulary of a language learner. Laufer and Nation claim that their
measure is superior to many others, the probably most popular among those
being lexical variation, also known as type/token ratio. Tokens in this notion
refer to the occurrences of words (punctuation excluded) in a text while types
refer to unique words in a text. Hence the type/token ratio is high if a writer
uses many different words and it is low if a writer uses only a small set of words.
Laufer and Nation suggest to look up all words in the learners” writings in the list
of the first 1,000 most frequent words as well as in the next 2,000 most frequent
words, and the University Word List (UWL; Guoyi and Nation, 1984). Apart from
these three categories, there is a category for all remaining words.!! A resulting
example profile is shown in table 2.1.

| Word List | Tokens \ Types | Families |
GSL 1 2202 75.39% | 542 54.25% 384
GSL 2 121 414% | 94 9.41% 78
AWL 245 8.39% | 136 13.61% 109
Others 353 12.08% | 227 22.72% n.a.

[Total [ 2921 100% | 999 100% |  n.a.|

Table 2.1: Example of a Lexical Frequency Profile.

The word lists used for a LFP are not just simple lemma lists or fullform lists.
They consist of words that are grouped into families. The concept of word families
is described in Bauer and Nation (1993). They define six cumulative levels of
inflectional and derivational morphology that can be applied to the word stem of
the given lemma. The difficulty for language learners to handle these word forms
is supposed to rise with the levels.

Laufer and Nation (1995) used a program called VocabProfile. This program
works on lists as described above. A cutoff was made so that words beyond level
three of each family are treated as separate words. The example in table 2.1 has
been created using a program called Range by Paul Nation.!?> Range uses the
first 1,000 and the second 1,000 words from the General Service List (GSL; West,
1953) as basis for identifying the most frequent words. Instead of the University
Word List, it uses the New Academic Word List (AWL) by Coxhead (2000). The

1 This suggestion entails that the word lists must not overlap.

12Range is available from http://www.victoria.ac.nz/lals/staff/paul-nation/
nation.aspx. While the program computes a total number of word families, we chose
to omit this number in the example. Such a number cannot be computed without a complete
list of all word families in the input text. The total number of families in the output of Range
therefore is simply the sum of the families found on the three word lists, which is slightly
misleading.
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word family lists used by the program are not part of the original publications of
the GSL or the AWL, they were derived later on. Our implementation of LFPs
described in section 5.4 make use of the very same data set.

Laufer and Nation consider the count of word families “more revealing as an
indication of lexical richness” than tokens or types. Their argument is that simple
inflected or derived forms such as happy, happiness, happily, etc. are of no concern
to the learners. However, beyond a given word family level, the words become
difficult even though one knows the lemma. For example, government would be
counted as a different word family than govern, because -ment is a level four affix.

2.3.2 Lexical Frequency Profiles as an Indicator of Text
Difficulty

LFPs are used to measure the language proficiency of learners with respect to
vocabulary. Their use originally is restricted to active vocabulary. Therefore an
LFP should be computed for written text by language learners. In order to be
used as a readability indicator as required for the purposes of the presented thesis,
LFPs should measure the passive vocabulary of learners as this is what they need
in reading. However, a study by Laufer and Goldstein (2004) hints to the direction
that a small increase in the learners’ active vocabulary implies a large increase of
the passive vocabulary. Hence LFPs can be used as readability scores indirectly.
This type of score is clearly limited to the measurement of the vocabulary load
that is imposed on the reader by a given text.

Absolute values such as the number of tokens or types cannot be used as
measures since they depend on the text length. Hence they must be normalized,
which is similar to the computing percentage values such as those shown in
table 2.1. It is imaginable that the percentage of types found on the GSL 1 list
could serve as an indicator for reading ease: the more common words a writer
uses, the easier should the text be. However, if the text is about an abstract topic,
avoiding technical terms may as well make it harder to read. As Laufer and
Nation (1995) point out, the count of word families is an interesting indicator.
Unfortunately we cannot have a total number of word families since this would
require a word family list that covers the entire input text. For arbitrary input,
this kind of coverage cannot be guaranteed with any list.

A normalization of word family counts by the overall token count must be
rejected. The same is the case for normalizing type counts by the overall token
count (equivalent to the type/token ratio). Inspecting a large text, one will
encounter fewer and fewer ‘new’ words the more of the text one is looking at
(cf. Zipt’'s Law; Zipf, 1949). In other words, the type count grows much slower
than the token count. Long texts will therefore always have a smaller type/token
ratio than short texts. Consequently, a family /token ratio is affected even more
because there are fewer families than types.

As a result of this discussion, we suggest to investigate two types of measures
based on the LFP concept:
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1. The proportion of tokens from each of the three word lists in all tokens
(yields four measures, including the words not found on any list).

2. The proportion of types from each of the three word lists in all types (yields
four measures, including the words not found on any list).

The investigation of the proportion of word families from each of the three word
lists cannot be conducted. As explained above, there are no absolute counts
of word families available for the entire text, hence no ratio can be computed.
Absolute numbers for word families could be created by switching from the
lookup in lists to a data-driven approach: the derivational and inflectional mor-
phology discussed in Bauer and Nation (1993) can be implemented as a program
generating the lemma plus the affix level. However, this lies beyond the scope of
the presented thesis and must be left to further research.
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3 Information Retrieval

Having discussed possible ways of assessing text ditficulty, we turn to the
techniques of Information Retrieval in this chapter. It is important to be
aware of these rather engineering-focused methods as a further step towards
gaining information at the reader’s level. Information Retrieval is too com-
plex to be used and understood as tool in a black box. Thus, we provide this
introduction.

3.1 Defining Information Retrieval

Today, a single word is enough to give people an idea about the matter: Google.
Most people know how to use a World Wide Web search engine such as Google
and they have at least some kind of understanding about how such a tool works.
Nevertheless, for the presented thesis we need to present a more detailed version.

Information Retrieval (IR) had appeared long before the emergence of the WWW
in 1993. Many of the basic techniques introduced in this chapter of the presented
thesis had already been discussed by Salton and McGill (1983). The ‘huge” Web
was not yet there, but computers also were ‘smaller” both in processing power
and in storage capacity. Salton and McGill refer to IR as a rather generic field:
“In principle no restriction is placed on the type of item handled in Information
Retrieval.” However, they continue stating that what IR usually is concerned with
is “narrative information”, not the querying of databases. They contrast IR with
database management systems, decision support systems, question-answering
systems and management information systems (Salton and McGill, 1983, p. 7).

In the presented thesis, we employ the definition of IR as given by Manning
et al. (2008, ch. 1):

“Information Retrieval (IR) is finding material (usually documents)
of an unstructured nature (usually text) that satisfies an information
need from within large collections (usually stored on computers).”

This definition implicitly states that IR does not mean guestion answering. Users
of IR systems are bothered by an information need. They formulate a query to the
system according to this need. However, they do not expect the system to answer
a particular question. Instead, the system returns a set of documents in which the
answer to the implicit question behind the query is given. Users expect the order
of the results to represent the relevance of the documents behind them to the
query. This interaction of the user with an IR system is illustrated in figure 3.1.
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Question:
Who was the organ player of Deep Purple?

-

¢) J L
Query:
deep purple organ

Matching documents:
Deep Purple - Wikipedia, the free
encyclopedia <::’ System
Jon Lord - Wikipedia, the free
encyclopedia -
-

Good keyboard for Deep Purple roc
organ sound? (List archive)

Figure 3.1: User interacting with an Information Retrieval system.

Manning et al. (2008, ch. 19) present a more fine-grained view on the users’
needs. They distinguish three broad categories of queries: 1) Informational queries
are those used for obtaining general information about a topic. Users want to
learn more about something and they usually visit a number of web pages from
the result list. 2) Navigational queries are supposed to take the user to exactly one
spot on the Web, e.g. the site of a certain company. 3) Transactional queries are
formulated when users want to find places on the Web where they can perform
certain transactions such as buying a product, downloading music, or making a
reservation.

3.2 Indexing

A simple form of IR is the use of a file search tool such as grep on the Unix
command line (Manning et al., 2008, ch. 1.1). While this is an efficient solution
for a limited amount of text data on a computer’s hard disk, it is easy to imagine
that for a text collection of larger size—such as a subset of the WWW-—one must
use something more advanced. The solution to the problem is indexing. Simply
put, indexing means to sort the data in a way that allows quick access to the
search terms. Normally, words are grouped into texts and texts are accessible as
documents. An index puts the words in the first place. Therefore it is also called
an inverted index.

Some more terminology: the unit in which texts usually are grouped is the
document. However, in IR, a document need not to be a book or a paper. It is
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Doct1: Doci Doc2 Doc3

Jon loves Vickie.

Ian 0 0 1
Doc2: Jackie 0 1 1
Vickie likes Jackie. |:> Jon 1 0 0
Doc3: likes 0 1 0
Jackie loves Ian. loves 1 0 1
Ian loves Jackie. Vickie 1 1 0

Figure 3.2: Creating a boolean index from documents.

also possible that a document could be as small as a paragraph. This is a design
decision of the developer of such a system. What we generally see as a word is
often referred to as term in IR. Consequentially, the expressions document index
and term index are used.

A simple way of indexing is used in the boolean retrieval model. For each term, a
vector of booleans is stored in the index. Each position in the vector corresponds
to one document. The value of true or false at a given position indicates whether or
not a term is present in the corresponding document. However, the boolean model
does not allow for the ranking of results (Manning et al., 2008, chs. 1.1, 1.4). It
only serves as an introductory example here. An illustration is given in figure 3.2.

For ranked retrieval, the ‘importance’ of each term-document relation in the
index must be known. The general technique of the underlying vector space model
was first described by Salton et al. (1975). Instead of a boolean value stating “term
is present’ or ‘term is absent’, the vector space model specifies a weight for each
term. This weight specifies how salient the term is for each document. One of the
most popular formulas for computing term salience is the TF-IDF measure. Its
definition according to Manning et al. (2008, ch. 6.2.2) is:

TF-IDF, ; = TF, ;- IDF;
Where

TF,; Term frequency: the number of occurrences of the
term ¢ in the document d.

IDF; = longFt Inverse document frequency of the term t. N refers
to the total number of documents in a collection,
DF; to the number of documents containing ¢.

The general behavior of this formula is to assign a high weight to terms that
occur in a few documents only. Terms occurring in almost every document are
assigned a low weight. The resulting index can be seen as a term-document
matrix. This is illustrated in figure 3.3.

The vector space model is related to the bag of words model. In this model,
the term frequency (TF,; ;) is stored in the index. Similarly to the vector space
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Doc1:

o Doc1 Doc2 Doc3
Jon loves Vickie.

Ian 0 0 0.95
Doc2: Jackie 0 048 035
Vickie likes Jackie. |:> Jon 0.48 0 0
Doc3: likes 0 0.48 0
Jackie loves Ian. loves 0.18 0 0.35
Ian loves Jackie. Vickie 0.18 0.18 0

Figure 3.3: Creating a term-document matrix based on the TF-IDF measure.

model, the order of words in the documents is not stored (Manning et al., 2008,
ch. 6.2). All three models described so far do not allow for querying phrases
instead of keywords. The solution to this issue is to store a list of positions of
word occurrences with each term-document pair. From this list, the original word
order can be inferred, which then allows for the querying of phrases.

3.3 Searching

An index without the ability to query for documents would be of no use. For the
boolean model, querying is straightforward: each term in the query is looked
up in the index. The resulting boolean vectors are merged. The result is a set
containing all documents that contain all search terms (Manning et al., 2008, ch. 1).

For querying in the vector space model, it is useful to see the inverted index
as a term-document matrix. The rows in this matrix (figure 3.3) can be used to
create term vectors. Since all entries of the matrix contain term-document weights,
document vector can be constructed from the columns. The actual querying is
done by representing the query as a vector as well. With this little trick, one
can compute the cosine similarity between each document and the query. Each
document is assigned a different score that yields the ranking of results. Manning
et al. (2008, ch. 6.3.2) present the following formula for computing the score of a
document:

score(q,d) =

V(q) = [wgs, .. wqr,] Query vector containing the weights of all
terms in the query.

N
V(d) = [wgy, ... was,] Document vector containing the weights of
all terms in a single document.
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Compared to the boolean model, this type of retrieval is rather complex to
compute. Actual systems therefore take shortcuts such as including heuristics
in order to work fast enough. Nevertheless, the cosine similarity does not only
provide the matching but also the ranking of the results.

3.4 Natural Language Processing in Information
Retrieval

In section 3.2, we use the expression term in the IR sense referring to words in
a document. This also brings in the first Natural Language Processing (NLP)
technique that is required in IR: tokenization. In general, one could use as much
analyses as one can get, but in practice, IR systems use only a few strategies. The
following information is provided by Manning et al. (2008, ch. 2):

Since almost all NLP strategies are language-dependent, language identification
may be necessary in order to choose the right tools in the chain. The issue of
Chinese vs. English in tokenization makes the dependency on language obvious.
German compounds are written together. Hence compound splitting can improve
the results in IR for German. Stemming or lemmatization applied to both the
query and the documents noticeably improves the retrieval results. Some words
occur very often but do not convey to meaning. These so called stop words such as
the or of are oftentimes excluded from the index.

Equivalence classes can be used to map similar terms together. This strategy
allows to deal with spelling variations (Manning et al., 2008, ch. 2.2.3). Unfortu-
nately, many approaches using more advanced NLP techniques such as parsing
or discourse analysis or the use of query and term expansion based on WordNet
(Fellbaum, 1998) so far are not able to outperform traditional IR systems based on
purely statistical methods (Tzoukermann et al., 2003).

Concluding, one can say the majority of successful NLP in IR takes place on the
word level. The most important techniques in use are tokenization and stemming.

3.5 Crawling the Web

Before the WWW started rocketing up in the nineties, the information fed into
IR systems was available locally in one form or the other. The web, lacking any
table of contents or other centralized directory and being stored on an unknown
number of computers all over the Internet, requires a strategy for obtaining the
documents managed by an IR system. The technology dealing with this issue
is called crawling or spidering. A crawler is a program that navigates through the
Web by following the links it finds on the inspected pages. While doing so, it
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collects all pages and passes them to the indexer of an IR system. According to
Manning et al. (2008, ch. 20.2.1), a crawler consists of the following components:!

1. A frontier that holds all URLs that need to be fetched. The URLs may point
to Web pages that are new or to ones that must be re-visited after a given
time in order to update the index.

2. A module for fetching (downloading) the documents pointed to by the URLs
managed by the frontier.

3. A module for parsing the downloaded documents in order to extract new
links to follow.

4. A duplicate detector that prevents the frontier from re-visiting documents it
has already seen.

There are many issues and details in crawling. For example, there are spider traps,
web-sites that link to variations of themselves, keeping the crawler in an infinite
loop. The crawler must also track pages that have vanished from the Web in
order to make the indexer remove them or move them to an archive. The future
advancement of the presented prototype IR system towards a real-world tool will
make it unavoidable to include a crawler. For the purposes of the prototype, we
assume the data fed into our indexer to be given.

!Manning et al. furthermore discuss the need for a Domain Name System (DNS) resolver module
which we consider a technical detail to omit in our overview.
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4 Combining Information Retrieval
and Readability

Now that we have the assessment readability and the efficient retrieval of in-
formation at hand, the remaining question is how to bring those two together.
In the following sections, we present a new approach for such a combination,
eventually sketching a strategy to retrieve information at the learner’s level.

4.1 Information at the Learner’s Level

Language teaching or learning requires text material for reading practice. The
motivation for reading increases when the text material fits the interest of the
learner. The World Wide Web provides an incredibly huge amount of text and it
is unlikely that there is not enough reading that fits the learner’s interests. This
large ‘textbook’ is accessible via search engines such as Google. However, texts
must also fit the learner’s language proficiency level in order to be useful for
the purpose of practicing. This extends the traditional Information Retrieval (IR)
paradigm as introduced in section 3.1 by the concept of a language level parameter.
A query to such a specialized search engine consists of two parts:

1. A keyword query constructed by the language learner, derived from his or
her information need.

2. A specification of the learner’s level of language proficiency.

For 1) we assume that most users of the Web are able to construct queries without
assistance. Constructing queries is not specific to language learning, users of
search engines should be familiar with it from seeking information in their mother
language. However, for 2) it is unlikely that the learner is able to give an exact
specification of his or her skills in the language to learn. For example, the learner
may be rather proficient in passive constructions but not proficient in gerunds.
It is unlikely that the learner is aware of these details in a way that allows him
or her to specify them in a query. Furthermore, the usability of a search engine
would suffer dramatically from such a detailed query form. Consequently, the
specification of the learner’s level of language proficiency must be presented as a
single parameter with simple values.

It is important to emphasize that a search engine for language learners cannot
satisfy all information needs. From the query types presented in section 3.1, only
the informational queries can be dealt with successfully. The index must hold
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several documents for each information need, each at a different level of difficulty.
This is for example the case if there are several online encyclopedias containing
an article on a certain topic each.

For navigational queries, the user always wants to find the one and only web
site. If the user wants to go to the official web site of the band Deep Purple,
there will be no other official web site of deep purple in simple English. Perhaps
for transactional queries such as seeking an online shop for buying a product,
there may be several possibilities. The linguistic variety of online shops however
remains questionable. Furthermore, users will most likely be interested in the
cheapest offer for a product, not in the most readable one.

An issue not mentioned so far is the one of undesirable content: a search engine
for language learning may be used by underage students. This calls for effective
protection of the users from inappropriate content. It may be necessary to limit
the search engine’s scope to a (large) subset of the Web from which we suspect
that it contains valuable material—or at least no offending pages.

4.2 Levels of Language Proficiency Used in
Teaching

In this section, we focus on levels of language proficiency as used in education.
There are great many scales on which one can measure how well a learner reads,
but for the purpose of a search engine, it is important to use those scales that are
known by teachers and learners.

4.2.1 U.S. Grade Level Scale and UK Key Stages

Many of the readability formulas discussed in section 2.2 yield scores which are
supposed to reflect the grade level required from the reader in order to be able to
understand the text. The grade level translates to the years of education in the
U.S. system that the reader has mastered. Many designers of readability formulas
see the grade levels as a continuous scale from 1 (primary school) to 17 (college
graduate). This is illustrated in table 4.1 which is based on Gunning (1968, p. 40).

The grade level is to be understood as a ballpark figure allowing for quick and
easy judgement of how suitable reading material is for readers. It is not an exact
measure. DuBay (2004, p. 7) even mentions that the grade level is a measure of
readability that has become independent from the actual number of years one has
been educated: “The grade level of completed education is no indication of one’s
reading level. Average high-school graduates read at the 9th-grade level, which
means a large number reads below that level.” With respect to that statement,
one can say that the grade level can serve as an indicator of appropriateness of
a certain piece of reading, but the often-proclaimed direct relationship from the
score of a readability formula to the actual grade level does not seem to be given.
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| Grade Level | Named Grade \

17 College graduate
16 senior

15 junior

14 sophomore
13 freshman
12 High School senior

11 junior

10 sophomore
9 freshman
8 Eight grade

7 Seventh grade

6 Sixth grade

Table 4.1: U.S. grade level scale based on Gunning (1968, p. 40).

In the United Kingdom, a related system of key stages was devised by the
government (UK Parliament, 2002, sec. 82). The key stage levels ranging from
1 to 5 reflect the stages in British state school education of students in the age
range from 5 to 18. They are used by publishers to indicate the appropriateness of

books for children as well as by some educational websites such as BBC Bitesize!.

4.2.2 The Common European Framework (CEF)

Both U.S. grade levels and UK key stages are used to denote general difficulty
levels of reading material. However, they both were not designed with language
learning or language abilities in mind. The Council of Europe has gone a different
way by introducing a system exclusively designed for judging language profi-
ciency levels. The Common European Framework of Reference for Languages (CEF) is
introduced in Council of Europe (2001, ch. 1) as follows:

“The Common European Framework provides a common basis for the
elaboration of language syllabuses, curriculum guidelines, examina-
tions, textbooks, etc. across Europe. It describes in a comprehensive
way what language learners have to learn to do in order to use a
language for communication and what knowledge and skills they have
to develop so as to be able to act effectively. The description also
covers the cultural context in which language is set. The Framework
also defines levels of proficiency which allow learners” progress to be
measured at each stage of learning and on a life-long basis.”

CEF distinguishes six levels of language proficiency ranging from A to C, each
consisting of two sub-levels 1 and 2. These levels are meant to describe the com-

1http://www.bbc.co.uk/schools/gcsebitesize/
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municative language competence of a language user?. The proficiency as categorized
by CEF is divided into several language activities. These activities are described in
so called illustrative descriptors which are basically ‘can-do’ lists. For example, the
descriptor for the activity “sustained monologue: describing experience” states
for the highest level C2: “Can give clear, smoothly flowing, elaborate and often
memorable descriptions” (Council of Europe, 2001, p. 59). The most general
description is summarized as a “global scale” given in table 4.2.

It turns out that the illustrative descriptors for CEF levels constitute a rather
complex image of social and linguistic skills. They try to cover skills such as
reading, listening, spoken interaction, writing summaries, conveying information,
or using the appropriate level of politeness. Council of Europe (2001, ch. 9)
reports on assessment of CEF levels in learners. The re-occurring relation between
production and perception in learners shifts to the relation between ‘can do” and
‘requires ability’. For CEF, the tests are not limited to production as in Lexical
Frequency Profiles (LFPs). Still, the intrinsic question answered is what a language
user ‘can do’, not what a text requires from the language user for comprehension.
The objective classification of texts into CEF levels must be left to further research
here.

Nevertheless, using CEF levels for a search engine for language learners bears a
few great benefits: 1) CEF is becoming increasingly popular in language teaching
in Europe. 2) Language learners are likely to know their CEF level after they have
mastered a language class, so they can specify that level in a search engine query.
3) CEF has been designed exclusively for the assessment of language proficiency
and is not dependent on any educational system or particular language.

The popularity stated in 1) can be demonstrated by a few examples: Cornelsen,
a German publisher of course books, issued a version of their Headway series
used in English teaching to adults which is based on CEF levels. The UNIcert
levels used in language teaching at many German universities aim at a one-
to-one relation to the CEF levels Bl to C2 (Arbeitskreis der Sprachenzentren,
Sprachlehrinstitute und Fremdspracheninstitute, 2006). The German state Bavaria
recently introduced CEF in language classes taught in secondary school education
(KWMBI, 2008).3

4.3 Models

Computer programs can only handle formalized representations of facts or rela-
tions. Therefore we discuss several types of models holding structured informa-
tion about learners, texts, and levels of language proficiency. We give reason why
there is no learner model in the special scenario of Information Retrieval for lan-
guage learning. Text models capture the formal measures of text difficulty. With

2Speaker is a widely accepted term in linguistics. In the CEF context, the term language user is
used instead. Not all language users speak, they may as well only read or write.

3In the Federal Republic of Germany, the states are responsible of school and university education,
not the republic itself.
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Can understand with ease virtually everything heard or read. Can summa-
rize information from different spoken and written sources, reconstructing
arguments and accounts in a coherent presentation. Can express him/her-
self spontaneously, very fluently and precisely, differentiating finer shades of
meaning even in more complex situations.

Can understand a wide range of demanding, longer texts, and recognize
implicit meaning. Can express him/herself fluently and spontaneously without
much obvious searching for expressions. Can use language flexibly and
effectively for social, academic and professional purposes. Can produce clear,
well-structured, detailed text on complex subjects, showing controlled use of
organizational patterns, connectors and cohesive devices.

Can understand the main ideas of complex text on both concrete and abstract
topics, including technical discussions in his/her field of specialization. Can
interact with a degree of fluency and spontaneity that makes regular interaction
with native speakers quite possible without strain for either party. Can produce
clear, detailed text on a wide range of subjects and explain a viewpoint on a
topical issue giving the advantages and disadvantages of various options.

Can understand the main points of clear standard input on familiar matters
regularly encountered in work, school, leisure, etc. Can deal with most
situations likely to arise whilst travelling in an area where the language is
spoken. Can produce simple connected text on topics which are familiar or of
personal interest. Can describe experiences and events, dreams, hopes and
ambitions and briefly give reasons and explanations for opinions and plans.

Can understand sentences and frequently used expressions related to areas
of most immediate relevance (e.g. very basic personal and family informa-
tion, shopping, local geography, employment). Can communicate in simple
and routine tasks requiring a simple and direct exchange of information on
familiar and routine matters. Can describe in simple terms aspects of his/her
background, immediate environment and matters in areas of immediate need.
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Can understand and use familiar everyday expressions and very basic
phrases aimed at the satisfaction of needs of a concrete type. Can introduce
him/herself and others and can ask and answer questions about personal
details such as where he/she lives, people he/she knows and things he/she
has. Can interact in a simple way provided the other person talks slowly and
clearly and is prepared to help.

Table 4.2: Global scale of CEF levels (taken from Council of Europe, 2001, p. 24).
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query models, we present an approach for combining constraints on text models
into criteria for specifying text difficulty levels as used in language teaching.

4.3.1 The Absence of a Learner Model

Learner models, also called student models, are a special type of user models used
in Intelligent Computer-assisted Language Learning (ICALL). They provide a
formal means of storing information about a learner. The type of information
varies depending on the purpose. Many versions include a profile of the learner
that holds information such as the learner’s native language, motivation to study,
name, level, gender, and so on (Amaral and Meurers, 2008; Murphy and McTear,
1997). An important component of such a model however is the one holding
information on the learner’s linguistic abilities. While the profile information
generally remains static, the linguistic abilities change over time, for example
together with the learning process in a language class. The actual data structure
used for a simple learner model can be seen as a table or a database record.

The formal expression of linguistic abilities is often times stored in the form
of error counts. An ICALL system poses training activities such as question-
answering tasks to the user and analyzes his or her responses. For example, the
number or case agreement in a verb phrase (VP) can be investigated by a parser
and an agreement checker. The number of agreement errors in the learner’s
response is then stored in the learner model in the field for VP agreement errors
(see for example Heift and McFetridge, 1999). The model is constantly adapted
by the system while the learner is doing activities. Error counts are decreased
whenever the user shows correct use of the corresponding form. Of course, when
the learner has just started using the system, there are no data about his or her
abilities yet. In this case, the initial values for the model can be obtained from a
stereotype library containing typical values for groups such as novices, beginners,
intermediate, and advanced (Murphy and McTear, 1997).

In ICALL, learner models are used to adjust the feedback given to the learner.
Feedback refers to the message produced by an ICALL system after the learner
has entered an erroneous sentence. The learner’s response is likely to contain
more than one error. Using the learner model, the error addressed by the system
can be chosen on pedagogical grounds (Heift, 2003).

In Information Retrieval for language learning, a learner model could be used
to retrieve texts at the learner’s level without him or her actually specifying a
language proficiency level. Given a search engine that is embedded in an ICALL
application, the model of the user would be readily available.

The remaining challenge would then be to infer a formal search engine query
from the learner model. Two basic strategies are imaginable: 1) if the model
indicates that a learner is weak in using a certain linguistic feature, the search
engine tries to avoid documents containing occurrences of this feature. 2) The
search engine tries to prioritize documents containing a certain linguistic feature
because the model indicates that the learner needs to practise this form. While the
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tirst option may satisfy the learner as his or her information need is satisfied by the
readable documents the search engine retrieves, the latter option is pedagogically
more reasonable as it may train the learner instead of just ignoring the issue.

Unfortunately, all these benefits of a learner model are irrelevant to us since
the presented prototype search engine is designed as a standalone application
that cannot make use of any information provided by an ICALL system. The only
information that is available is a vague judgement of the learner’s level, given by
the learners themselves. As a result, one must consider how to represent these
vague levels in terms of a model suitable for querying a search engine. This is
discussed in section 4.3.3.

4.3.2 Text Models

| Type | Key | Value |
General Character Count 14249
General Sentence Count 111
General Token Count 2542
General Type-Token Ratio 0.3703
LFP Academic Word List Token Ratio 0.0816
LFP Academic Word List Type Ratio 0.1389
LFP General Service List 1k Token Ratio | 0.1389
LFP General Service List 1k Type Ratio 0.4191
LFP General Service List 2k Token Ratio | 0.0557
LFP General Service List 2k Type Ratio 0.0841
LFP Off-List Token Ratio 1.3119
LFP Off-List Type Ratio 0.1325
Readability | Automatic Readability Index 12.7182
Readability | Flesch Reading Ease 57.6363
Readability | Gunning Fog Index 19.4510
Readability | Original Dale-Chall Score 8.8971

Table 4.3: An example text model holding general information, parts of a Lexical
Frequency Profile and several readability scores.

In order to find the appropriate texts for language learners, the texts indexed
by such a specialized IR system must be analyzed using the methods introduced
in chapter 2. The results of the analysis must be stored together with the actual
text data in the index. While the readability measures yield one score each, other
measures such as the LFPs yield a bunch of different scores.

A text model as we use it for the purposes of combining readability and IR
is a simple key-value table. It is used to describe the linguistic properties of a
document fed into the indexer. An example is given in table 4.3. The structure of
such a model is flat, even though the example indicates a logical grouping of the
given key-value pairs. Some entries are of a general nature, such as the count of
sentences in a document. The LFPs logically form a group of their own. There
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is an entry for each readability measure. The example model is incomplete and
serves illustration purposes only.

The text model for a document simply holds the results of the conducted
analyses. The interpretation of some or all of these numbers is done using a query
model.

4.3.3 Query Models

] Category or Level: Easy \
| Key | Range |
Flesch Reading Ease [0, 8]
Original Dale-Chall Score [0, 8]

Table 4.4: Simplistic example query model with two ranges.

Query models are the counterpart of text models as specified in section 4.3.2. A
query model consists of a table of ranges for fields in the text model. Formulated
in natural language, an entry in a query model could sound as follows: “The
Original Dale-Chall Score is between 0 and 6.5.” An illustration is given in
table 4.4.

Another view on query models could be the one of a set of constraints that
are applied to the document: a document is counted towards the positive search
results only if the text model of the inspected document contains values in the
ranges given in the query model. Only if all constraints are met, the document is
considered ‘good’. Each query model contains only constraints for those variables
that are known to be salient for identifying the desired proficiency level. Hence
query models are underspecified on purpose.

Since CEF levels are becoming increasingly popular, query models should
reflect these levels. On other words: a query model for a CEF level must contain
constraints on readability measures and other scores that are only met by text
models of texts that actually require that level from the reader.

Since the query models are supposed to directly reflect a level of language
proficiency, we include a category or level name in the models themselves. The
users of an IR system for language learning then must specify this level name in
the query.*

4.4 Specific Research Questions

Having introduced the concept of searching documents of a given CEF level in the
index of an IR system, the most important question is: how can we map from the
readability measures and other scores to CEF levels? Another question inherent

4Quite naturally, he or she will be offered a list of available levels to choose from.
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to the approach is: are there enough texts of different levels on the web? Both
issues are addressed as part of further research in section 8.2.
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5 Implementation: A Search Engine
Prototype

The strategy for a Information Retrieval system has been sketched in the pre-
vious chapter. Consequently, we present the implementation of a prototype
system in this chapter. The system is based on UIMA as a framework hosting
NLP analysis modules and on the Lucene search engine library. Apart from
these big elements in the picture, we discuss the implementation and modern
computer-based interpretation of the traditional readability measures pre-

sented earlier.

5.1 System Overview

Collection Source Processing Pipelines Lucene Indexer
A ‘ x ‘ A
““““““““ I I Tt T TTTT T
| | |
Controller
A

Indexing Application

Search Engine
Web Application
T

v

Lucene Index Searcher

Figure 5.1: Simplified overview of the presented prototype, including indexing and
querying applications.

There is a natural division into two components in an Information Retrie-
val (IR) system: indexing and querying. In the case of the presented prototype
system, indexing is clearly more sophisticated. After an introductory overview
we describe the details in the following sections. A greatly simplified view on the
presented system is given in figure 5.1. The entire system is written in the Java

programming language.
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The indexing application takes care of reading the input data, eventually
producing an index suitable for fast querying. In order to do so, the application
makes use of a central controller. The controller reads the HTML data from disk
and hands them to three processing pipelines. The result of these pipelines then
is passed on to the indexer by the controller.

As mentioned earlier in section 3.5, the prototype system does not make use of
a Web crawler. The data source is of a generic nature, specified by an interface.
The current implementation of that interface reads the data from disk expecting
the format of the Unix tool GNU wget!. Since wget is capable of crawling over
Web sites, it is a suitable substitute of a crawler in prototype testing.

From the controller’s perspective, there is only one single processing pipeline.
Again, the pipeline is specified by an interface. In fact, only the actual application
‘knows’ that the UIMA-based processing pipeline is used. This pipeline consists
of three sub-pipelines as presented in the following sections. The output of
the pipeline is a data structure holding a text model as previously described in
section 4.3.2. For technical reasons it proved appropriate to also include the plain
text of the document in that model using a special field. This text model is then
handed to an again generic indexer that is implemented as a wrapper around the
Lucene search engine library.

As the actual implementations of the generic modules are only known to the
application itself, they can be easily replaced by other implementations. It is
unlikely that the implementation of the pipelines or the indexer will be changed
in the future. However, with the escape from its prototype status, the system
will certainly make use of another implementation of the collection source: a
full-featured Web crawler must take over here.

Searching the index is a lot less sophisticated: a web application queries the
previously constructed index. This application also takes care of loading and
applying query models.

5.2 UIMA-Based Processing Pipelines

5.2.1 The Unstructured Information Management Architecture

The processing pipelines previously mentioned are subject to detailed discussion
in this section. We use the Apache Unstructured Information Management Archi-
tecture (UIMA)? as a framework to host our analysis modules. UIMA originally
was developed by IBM and introduced in Ferrucci and Lally (2004). And extensive
overview is also given in Gotz and Suhre (2004). Simply put, UIMA provides
a skeleton for implementing any kind of data processing in pipelines. Usually
these pipelines are fed with unstructured data such as text. These data are then
annotated with deduced information until structured data can be gained. An
often-used example is the one of extracting all dates from a text.

lhttp://www.gnu.org/software/wget/
thtp://incubator.apache.org/uima/
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The document’s text as well as all annotations it is equipped with while passing
the pipeline are stored in a Common Analysis Structure (CAS). The CAS can be
seen as an instance of a platform-independent type system specifying all data
structures that are used in the analyses. Such a type system must be customized
for each application in question. The modules providing annotations are referred
to as Analysis Engines (AEs). In addition, there is the possibility to have Aggregate
Analysis Engines. These are containers holding primitive AEs. The processing
order within an Aggregate AE is managed by a flow controller. In many scenarios,
the flow controller simply runs the AEs in linear order. For special purposes, other
orders are possible. Furthermore, it is possible do design custom flow controllers.

Collection Readers and CAS Consumers are used to read in the documents
that are to be processed and to store the structured information in some form or
the other. The presented prototype system does not make use of these. Instead,
it instantiates a pipeline on startup and feeds it directly with CAS instances for
each document.

Our system makes use of a special feature of UIMA: a CAS can be multi-viewed.
This means that apart from the initial annotation, there are several CAS layers or
views available.

5.2.2 Refactoring the New WERTI Pipeline & A Pipeline for
Computing Readability

We used the NLP pipeline of the Java re-implementation of WERTi by Dimitrov
(2008) as a basis. WERTi shares a few important concepts with our system: HTML
pages must be fetched and analyzed. The relevant text must be extracted from
the page and converted to plain text. During development, we found it useful to
divide the processing in three essential steps or sub-pipelines which are illustrated
in figure 5.2. The isolation of these pipelines is favored for two reasons: 1) it
allows to keep apart the processing of the two formats in use, namely HTML
and plain text. 2) The emerging modularity allows the sub-pipelines to be used
independently, eventually allowing to use the same program code in at least two
projects, namely future versions of the New WERTi and our prototype.

The UIMA type system which we use is an extension to the one of the New
WERTI. Since it simply inherits from WERTi’s system, it should be compatible.

The first two sub-pipelines provide the basic functionality that is used by a both
our IR system and WERT], even though only two components (asterisked in the
tigure) where eventually used from the original pipeline.

WERTi’s way of processing HTML may seem unusual: instead of parsing the
data as a browser would do, it annotates them. The HTMLAnnotator finds HTML
tags. In addition to the original version, it also fails the pipeline if the input data
are not in HTML format. Subsequently the ParagraphSpanAnnotator determines
regions that constitute paragraphs. This means that a number of HTML tags must
be mapped to the entity of a paragraph. This includes natural choices such as
<p> or <div>, but also headings or list items are interpreted as paragraphs, just
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to name a few. Even though they are not real paragraphs they are counted as such
because the simple document representation model used later on only knows
paragraphs, sentences, and tokens. The GenericRelevanceAnnotator is a component
that is essential to WERTi and useful to our IR system. It identifies those parts
of a Web page that contain the text. Advertisements and navigation menus are
disregarded by this module. Eventually, the html2plaintextMapper Annotator maps
from the HTML code to simple plain text. The resulting text is stored in a new
view of the CAS, allowing the following pipelines to be completely ignorant about
HTML.

The generic NLP sub-pipeline starts out with the LanguageChecker module.
This module is a wrapper around the Java Text Categorization Library®, an
implementation of the n-gram based language classification algorithm introduced
by Cavnar and Trenkle (1994). The language checker fails the entire pipeline if
the detected language is not English. The subsequent modules all are language-
specific, so it would be useless to continue processing if the input language
cannot be analyzed.* The SpWrapperSentenceAnnotator is a wrapper around
SentParBreaker® by Scott Piao. As the name suggests, it annotates sentences. The
following two components, OpenNlpTokenizer and OpenNIpTagger, are wrappers
around the tokenizer and the POS tagger of the OpenNLP® project. They are
based on a maximum entropy strategy. The statistical models used are the ones
provided for English by the OpenNLP project. The morphaLemmatizer module is a
wrapper around the Unix tool morpha, a lemmatizer for English introduced by
Minnen et al. (2001). Since the analyses that are currently used do not require
lemmatization, this module is deactivated.”

The readability sub-pipeline finally conducts all the analyses introduced in
section 2. A detailed discussion of the implementation is given below in section 5.4.
The SimpleReadabilityMeasures module computes all readability measures® but the
Original Dale-Chall measure which is computed by the oldDaleChall module. The
LexicalFrequencyProfiler computes Lexical Frequency Profiles (LFPs). All modules
in the readability pipeline store their results in an UIMA-based representation of
the text model in the CAS. As a final step of the pipeline, the RelevenatText2Model
adds the text of the document to the model.

After all three sub-pipelines are run, an UIMA-independent implementation of
the text model is constructed from the model in the CAS. All further processing
then uses this independent implementation. For quick testing of the pipeline

3http://textcat.Sourceforge.net

*A multi-language system to be developed in a distant future could in this step devise a
sub-pipeline appropriate for the detected language.

Shttp://text0.mib.man.ac.uk:8080/scottpiao/sent_detector

6http://opennlp.Sourceforge.net

7In order to fulfill the previously proclaimed synergetic effects between future versions of WERTi
and our system, we left the lemmatizer module in the pipeline. It is likely that WERTi will use
it.

8In fact, these measures were developed in a separable library in order to enable the convenient
use in other projects. SimpleReadabilityMeasures simply wraps around this library.
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during development, we created a small graphical debugging tool which includes
a text model viewer (depicted in figure A.1 on page 82).

HTML Preprocessing Generic NLP Readability
HTMLAnnotator* LanguageChecker [ SimpleReadabilityMeasures
SpirapperSentence oldDaleChall
ParagraphSpanAnnotator OpenNIpTokenizer

GenericRelevance
Annotator*®

html2plaintextMapper
Annotator

OpenNIpTagger [ LexicalFrequencyProfiler

morphalLemmatizer RelevantText2Model

Figure 5.2: UIMA-based processing pipelines used in the prototype system (aster-
isked components taken from Dimitrov, 2008).

5.3 Using the Lucene Search Engine Library

5.3.1 Indexing

Apache Lucene’ is a search engine library written in Java. An extensive intro-

duction and programming manual is given in Gospodneti¢ and Hatcher (2005).
Lucene implements all relevant bits and pieces of indexing and querying as
described in section 3 and is convenient to use for programmers. The indexing
of Lucene yields an index that can be searched in many ways, including phrase
queries. The performance is state of the art, meaning that it is as fast in querying
as users would expect any modern Web search engine to be.

The basic units of information in Lucene are documents and tokens. The library
comes with all NLP components required for constructing a search engine index
(cf. section 3.4). The analyses take place in so called analyzers which can also be
stacked upon each other yielding a filter chain. In comparison to UIMA, Lucene
constructs a true pipeline in which the output of each module replaces its input.
In contrast UIMA AEs aggregate annotations and allow the access to any result
deduced at any earlier step in processing.

9http://lucene.apache.org
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A document in a Lucene index consists of fields containing tokens. The field
containing the document text therefore must be processed by a tokenizer. Other
tields such as URLs are indexed as single tokens. A common way to implement
this ‘’knowledge” about the fields is to inherit from the default analyzer class. The
resulting customized analyzer then can use other analyzers as filters, depending
on the field that currently is processed.

For the presented prototype, we leave all IR-specific NLP to Lucene’s Stan-
dardAnalyzer for English. This essentially means that some processing such as
tokenization takes place twice. This is necessary for two reasons: 1) in order to
find the terms in querying, the very same analysis must be conducted, however
there is no UIMA-based pipeline available at that time. 2) There are different
styles of tokenization and Lucene implements the style best suitable for IR. In
section 5.4.1 below, we discuss different flavors of tokenization. The standard
analyzer also takes care of stop words such as the or of which are usually not put
into the index, because they do not constitute to the meaning or contents of a
document. !

In addition to storing a tokenized version of the document text as found in the
text model, our system also stores a version of the same text that has undergone
stemming. Lucene provides an implementation of the Porter stemmer (Porter,
1997). Other fields stored in the index are technical meta-data such as the URL
of the document, the document title as found in the HTML code, and the date
of the last modification as given by the Web server where the document was
downloaded from.

The readability scores from the text model must be stored as fields, too. Since
fields can only contain string values, the numbers are converted into strings. This
is implemented using the Trie encoding provided by recent development versions
of Lucene (Schindler and Diepenbroek, 2008). The Trie encoding provides a
string representation of numbers which is not human-readable. However, this
representation allows for very fast querying for ranges of numbers. The traditional
implementation of range queries in Lucene runs in a time depending on the size
of the index. For a test index consisting of about 74.000 documents, a query took
several seconds. This rather long processing time motivated our switch to the Trie
encoding.

5.3.2 Querying

Querying the index for information at the learner’s level consists of two parts:
the information and the learner’s level. As previously discussed, the latter is
represented in query models. In our implementation, query models are defined
in a simple XML-based format. An example is given in figure 5.3. The query
model files contain ranges for readability measures and other scores as well as

19The case of the rock band The Who which cannot be found in the index due to stop word
removal is left unaddressed in our prototype.
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<?xml version="1.0" ?>
<querymodel version="0.9">
<meta>
<name>Hard</name>
<sortkey>2</sortkey>
</meta>
<entries>
<range field="R_ARI" from="8.0" to="100"/>
<range field="R_oldDaleChall" from="8.0" to="100"/>
</entries>
</querymodel>

Figure 5.3: A simple query model specified in an XML-based format.

a name presented to the user. An additional sort key is used for specifying the
order in which the model names are presented in the user interface.

The query entered by the user is interpreted using Lucene’s default query
parser. It constructs a Java representation of the text query which is then added
into a boolean query with the text model ranges. All ranges and the text query are
connected with the AND operator. Similar to Lucene’s indexing, the query parser
uses an analyzer. As the analyzer produces the tokens stored in the index, the
same analyzer must be used for the query in order to be able to find the tokens.
Hence we use an analyzer that takes care of the text field, the stemmed text
field, and the title field. Consequently, this analyzer applies the Porter stemming
algorithm to the query as well. The possibility for phrase matches and direct
matches must be maintained, so the stemmed query text is put into the final query
in addition to the original text. The resulting query as produced by Lucene’s
debug output is shown in figure 5.4. The numbers in that query seem to be
nonsensical. However, they were converted into the previously mentioned Trie
encoding which is not human-readable.

The results are ranked by Lucene’s built-in implementation of TF-IDFE. Each field
is equipped with a boost which is normally set to 1.0. The boost value strength-
ens or weakens the importance of a field for the ranking of the corresponding

Query: +(+(text:1life title:life text.stem:1ife)
+ (text:sciences title:sciences text.stem:scienc))
+trie.tm.R_ARTI:[4620693217682128896 TO
4636737291354636288]
+trie.tm.R_oldDaleChall:[4620693217682128896 TO
4636737291354636288]

Figure 5.4: Textual representation of a Lucene query for life sciences using the
model given in figure 5.3.
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document. Short fields are by default more important in Lucene. This fact makes
a special boost value for the title field superfluous. For the field containing the
stemmed text, we set the boost to 0.8 in our prototype. This way, a direct match
of the form as entered in the query is ranked higher than an indirect match of the
stemmed query.

Lucene also provides a highlighter as an additional component. The highlighter
basically searches for prominent occurrences of the query words (or word stems)
in each search hit and searches for the best text snippet representing the result.
Furthermore, it is capable of inserting HTML markup that highlights the query
words in that snippet.

The result to the query that served as an example in this section is depicted
in figure 5.5. It is worth mentioning that our document collection of about
74.000 texts used for initial testing does not produce results that allow to draw
conclusions about the system’s performance. After all, the document collection is
anything but well-balanced. The links labelled “debug” in the figure make the text
model of the corresponding document appear on the screen. This link of course
will be removed in a version for real users. The interface, although currently not
overwhelmingly well-designed, is simple to use. It is only one parameter away
from search engines users are familiar with: the drop-down box specifying the
desired difficulty level of the documents to be retrieved.

5.4 A Modern Interpretation of Readability
Measures

5.4.1 Tokens and Words

Tokenization is a solved problem. Still, it is worth being addressed here. The
reason is not that the tokenizers we use generally lack performance. The question
rather is: what is a token? It turns out that this depends on the interpretation or
the purpose or even on conviction. A simple example can be used to highlight
the issue: the previously mentioned OpenNLP tokenizer splits the input won’t
into wo@n’t. The standard analyzer in Lucene does not split it. For lookups in the
word lists used in LFPs, the desired split is won®’@t.

The first style of tokenization is the one often expected by POS taggers. If don't
is a contraction of two words, then it is logical that these are split into do and n't
as a form of not. In the case of won’t, this leaves us with the ‘word” wo. But still,
both components can be assigned a POS and the negation can be of importance in
further processing steps such as parsing. This style of tokenization is linguistically
motivated.

Lucene is not interested in understanding negation. If the user enters won’t in
the query, he or she probably is really interested in that occurrence, not in any
analysis of that. If there was the request for any smarter treatment of the case,
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& irdicall Web Interface - Mozilla Firefox

Datei Bearbeiten Ansicht Chronik Lesezeichen Extras Hilfe
= - b @ ﬁ ||_| http:h’localhost:8080fir4icaIIWIfsearch?q=Iife+sciences&|'| [>] "| |\]
L] L]
irdicall Web Interface
|Iife sciences |Hard j Search |

1. Huxley on the Importance of Studying the Sciences - Sidebar - MSN Encarta
of Studying the Sciences British biologist Thomas Henry Huxley made scientific study comprehensible ... significance
of the sciences versus that of the humanities. The essay was delivered in 1880 ... , our ancestors were furnished with a
compact and complete criticism of life. They were told how
debug

2. Virus (life science) - Multimedia - MISN Encarta
Additional Reference Materials Other Resources Multimedia from Encarta Virus (life science) Viruses T4 Bacteriophage
Smallpox Viruses Viral Structure Bacteriophage Lytic and Lysogenic Cycles of a Bacteriophage Viral Replication
Adenovirus Life Cycle of West Nile Virus Life Cycle ... Additional Reference Materials Other Resources Multimedia
from Encarta Virus (life science ... Cycles of a Bacteriophage Viral Replication Adenovirus Life Cycle of West Nile
Virus Life Cycle —
debug

3. Social Reform Information - Social Sciences and the Law | Encyclopedia.com: Columbia
Encvclopedia Online!
and Technology Social Sciences and the Law Sports and Games Ancient Religions Biographies Christianity ... toward
African Americans, and to... (WCTU), organization that seeks to upgrade moral life, especially ... Psychology History
Literature and the Arts Medicine Philosophy and Religion Science
debug

4. Yirus (life science) - MSN Encarta
Windows Live® Search Results Virus life science, infectious agent found in virtually all life forms ... . In Internet
Explorer, this option is under the Edit menu ... Virus News - Life Science News RSS ... and articles via RSS Also on
Encarta * Virus (life science) Encyclopedia Article | | | Multimedia
debug

5. Yirus (life science) - MSN Encarta
Windows Live® Search Results Virus life science, infectious agent found in virtually all life forms ... . In Internet
Explorer, this option is under the Edit menu ... Virus News - Life Science News RSS ... and articles via RSS Also on z
Encarta » Wirns (life science) Encvelonedia Article |11 Multimedia LT

Fertig & #]

Figure 5.5: Screen shot of the web application.
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the index and the query could be expanded by will not in order to retrieve more
documents. There is no linguistic motivation and no such motivation is needed.

We do not know about the reasoning in the Range program used for LFPs. As
the word lists which we use for our implementation contain both aren and ¢, the
interpretation of a token here is ‘everything that is not a delimiter’. Furthermore,
expressions such as type/token-ratio refer to tokens being words, while in NLP
tokens usually include punctuation. The Original Dale-Chall readability score
has entries such as aren’t in the word list, so the contractions are single tokens or
words in that interpretation.

We present these example to show a simple fact: different styles of tokenization
do matter. They are an issue one should at least be aware of when implementing
NLP algorithms. Sometimes a tokenizer even must be adjusted accordingly. The
following section discusses more interpretations of language that inventors of
readability formulas assume.

5.4.2 Readability Measures and Natural Language Processing

All readability measures discussed in section 2 once had been designed for manual
application, except for the Automated Readability Index (ARI) and the Coleman-
Liau Index. It is therefore important to emphasize that all scores computed by
implementations of these measures are interpretations of the measures. It is not
unlikely that the resulting scores differ from those presented in the original study.
This is the case for three reasons: 1) the NLP used for the computations can be
error-prone or simply using different linguistic interpretations (see section 5.4.1).
2) The analyses to be done by human annotators in manual applications can be
error-prone because this type of work is repetitive, difficult, and tiring. 3) The use
of relatively small samples in manual application can yield results different from
the ones gained from an analysis of the entire text as done by implementations.

A precise implementation of readability measures would require different
styles of tokenization, variants of syllable counting, and a well-motivated way of
sentence segmentation—for almost each and every measure.

5.4.3 Implementing Readability Measures
The ‘Simple’ Measures

Our starting point for implementing readability measures was Java Fathom!!, a
port of the Lingua::EN::Fathom module for Perl. It soon turned out that heavy
modifications were necessary, so we reworked the entire library. In our implemen-
tation, all readability measures except for the Original Dale-Chall score share a
common linguistic analysis and are provided by a centralized library. The syllable
counter was ported from a rule-based implementation in Perl by Laura Kassner.'?

11http ://www.representqueens.com/fathom/
12Personal communication via e-mail in December 2008. We are not aware of any publication of
the named syllable counter, neither as a paper nor as program code.
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The readability library draws on the tokenization and sentence segmentation
described in previous sections. Hence the interpretation of tokens is the one used
in NLP in general, except for that we filter out punctuation tokens in order to
only work with ‘words’.

The syllable counter is ignorant towards numbers. Some measures such as
Lasbarhetsindex (LIX) require to count the syllables in 1984 as five (nineteen-
eighty-four) or as ten (one thousand, nine hundred and eighty-four), depending
on the context. The implementation does not include that level of detail. Gunning
(1968) advises not to count inflectional suffixes as syllables for his Fog Index.
Again, this is a detail we omitted.

The Original Dale-Chall Score

The Original Dale-Chall score is implemented in a separate module. This module
reworks the NLP-style tokenization to the version containing words as described
in Dale and Chall (1948b): Tokens containing contractions are attached to the
previous token. Dale and Chall also include a four-pages list of rules on how to
lookup words on the Dale-Chall list of easy words. The decision whether a word
is familiar or unfamiliar also depends on morphology. For example, treatment is
supposed to be unfamiliar even though treat is on the word list. However, treating
is supposed to be familiar, even though it is not on the word list. We inferred
morphological rules from the rules given in natural language by Dale and Chall
and implemented them using the morphology components of the BananaSplit'?,
a program originally written by the author for splitting German compounds. The
functionality provided by the BananaSplit morphological components is the one
of removing suffixes from words and looking up the resulting words in a list at
the same time.

Some rules described by Dale and Chall could not be implemented in the given
time for the project. For example, proper nouns are considered familiar. Since
named entity recognition is not available in our pipeline, we decided to mark
those words familiar which are tagged as proper nouns by the OpenNLP tagger.
The instruction to count compound names and places such as St. John or Van
Buren as single words cannot be complied with. For abbreviations, only those are
to be counted familiar that are present in the word list in unabbreviated form.
We ignored this issue. We also ignored more esoteric rules such as the one in
this example: “Security Council, if repeated more than twice within a 100-word
sample, is counted as four unfamiliar words”.

Most instructions however can be simply treated by ignoring them. For example,
the supposed treatment of irregular plural forms is that they are unfamiliar if
they are not on the list. Since the morphology we use is plain and simple and
does not care for irregular forms, this is automatically the case.

No distinction between uppercase and lowercase spelling is made in the word
list lookups.

13http ://www.drni.de/zap/bananasplit
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Lexical Frequency Profiles

For computing LFPs, we implemented a data structure similar to a collection of
trees. The root node of each tree represents the word family and the children
are members of that family. By connecting the nodes with double links, the
program can easily traverse from family members to the word family and vice
versa. Counting types (unique tokens) is done using a simple hash map. The
implementation works on any number of word lists, given that the words on
those lists are mutually exclusive.

Again, the tokenization provided by the OpenNLP tokenizer is reworked to fit
the needs: contraction fragments such as n't from don’t are split at the apostrophe,
constructing three tokens for each contraction (e.g. don®’®t). Punctuation tokens
are subsequently removed before the LFP is constructed.

Again, no distinction between uppercase and lowercase spelling is made in the
word list lookups.
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6 Towards an Evaluation Strategy

‘How good is it?” In this chapter we sketch strategies of evaluating our proto-
type Information Retrieval system. Using a large test collection obtained
from various web sites, we furthermore shed some light onto the reliability
of the methods for assessing readability in use.

6.1 Precision and Recall

Evaluation in Information Retrieval (IR) can be conducted by using standardized
test collections and test queries (Manning et al., 2008, ch. 8). If ranking of results
is disregarded, the classification of each result is binary: either the document is
relevant or irrelevant. Based on this classification one can compute precision and
recall, the metrics widely known in NLP:

Number of Relevant Items Retrieved
Number of All Items Retrieved

Recall = Number of Relevant Items Retrieved
" Number of Relevant Items in the Collection

Precision =

Reformulated in natural language, precision says how many of the retrieved
documents actually were relevant. A high precision value means that many hits
actually were relevant. However, precision does not say how many other relevant
documents in the collection might have been left out in the search result. This
is where recall comes into play: a high recall value indicates that many of the
relevant documents have been retrieved. Of course, recall can still be high if a lot
of irrelevant documents are in the results.

Manning et al. (2008, p. 143) write: “Typical web surfers would like every results
on the first page to be relevant [...]” This claim is confirmed in an eye-tracking
experiment conducted by Granka et al. (2004). Their findings indicate that users
focus on the first two results: “After the second link, fixation time drops off
sharply.” Concluding, we can say that a good search engine should aim to have
the very best result right on top of the results list. Since precision and recall are
set-based, one has to built sets of top k hits in ranked retrieval. Consequently,
there are k sets for which the metrics are computed (Manning et al., 2008, ch. 8.4).
The findings of Granka et al. suggest to focus on the results for k < 3.
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6.2 Beyond Precision and Recall

In order to use precision and recall for the evaluation of the presented search
engine prototype, a large test collection is necessary. More important, this test
collection must contain documents satisfying a variety of information needs.
The language level must be given for each document. Such a corpus is to our
knowledge not available at the time of writing, given that it should be annotated
with CEF levels. This issue is discussed in section 8.2.

It is unlikely that a text collection large enough for evaluating our system can
be devised without putting an outsized effort into the endeavor. However, once
the automatic assessment of CEF levels is fully available, it is possible that this
assessment can be tested and evaluated separately from the search engine. A
large test collection which is well-balanced concerning language difficulty levels
should then be sufficient for evaluation. The remaining question then is: what
should this collection contain? After all, the search engine may perform quite
well on the collection but still the collection could contain documents that are
rather irrelevant to language teachers and learners.

Therefore we propose as future research to have a large enough number of
human judges that test the system in a real-world application setup. As a first
step, a qualitative analysis via interviews with these users can be conducted.
Depending on these first results, further evaluation strategies can be devised.

6.3 A Closer Look at Readability Measures

6.3.1 A Test Collection

Since testing our prototype involved the downloading of a large amount of data
from the web, we actually have a corpus. However, this corpus is not annotated
with levels of text difficulty. Still, there are things one can look at without having
a gold standard. First of all, we used wget to collect seven large web sites. We
deliberately focused on online encyclopedias. They all should use the same genre,
they are all in a way controlled language. We expect differences between the texts
from the seven sites in general. For example, Simple English Wikipedia should be
more readable than Britannica Online.

In a preliminary investigation of the text models gained from 229.204 docu-
ments, we found that wget had stepped into several spider traps. For example,
if the crawler follows the edit link on a wiki page, it may always end up on the
login page, but with a different URL each time. Consequently, we removed all
documents having the same domain name in the URL, and the same lengths in
tokens and sentences, and the same Flesch Reading Ease. It is still possible that
two different documents are removed this way, but it is very unlikely to happen.
The result of the duplicate removal is a set of 190.872 text models of which we
took a random sample of 1.000 documents for each web site. This procedure
yields a set of 7.000 text models as a basis for further statistical analyses.
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6.3.2 Examining the Test Collection

There are two questions that a closer at look our 7.000 text models sample can
shed light onto: 1) how do all these measures discussed relate to each other?
2) Are there measures that are good candidates for discriminating the seven web
sites in the data? The latter question is especially relevant as we hypothesize that
the different web sites maintain different levels of text difficulty.

The numbers given in table 6.1 show that all readability scores exhibit a rather
weak correlation with the length measures (counts of characters, sentences, and
tokens). This is an important finding as it shows that the measures can be used
for texts of arbitrary length. It is not natural to expect this independence since the
original versions of these measures were designed to be used for small samples
only, not for entire texts.

R_FleschReadingEase

R_ARI
R_ColemanLiau
R_FORCAST
R_FleschKincaid
R_Fogindex
R_LIX

R_SMOG
R_oldDaleChall

Character Count | 0.50 0.27 0.03 0.42 -0.13 0.47 040 0.59 0.19
Sentence Count | 0.23 0.07 0.01 0.19 -0.04 0.23 0.18 0.29 0.15
Token Count | 0.48 0.26 0.04 0.40 -0.11 0.46 0.39 0.58 0.17

Table 6.1: Pairwise correlation scores of document lengths in characters, sen-
tences, and tokens with all readability measures discussed.

Figure 6.1 shows the distributions of the scores computed by those six measures
that yield results on the U.S. grade level scale. For each measure, there are seven
curves indicating the distribution of scores for the seven web sites from which
the data were downloaded. The most strikingly different scores are the ones
computed by the FORCAST formula. It is not entirely clear why these scores are
so far-off, but after all we abused the formula since it has been created for U.S.
Army reading for young adult men.

The other five grade level-based formulas, though varying in their offsets, pro-
duce more valuable results. They all show differences in the scores for Simple En-
glish Wikipedia and the Stanford Encyclopedia of Philosophy (plato.stanford.edu).
Furthermore, they all classify the Encyclopedia of Earth in the upper difficulty
region, while Britannica Online and Microsoft Encarta are closer together in the
lower region. The New Scientist’s web site seems to use a quite controlled lan-
guage since it exhibits a rather narrow peak for all five ‘good” grade level formulas.
These first impressions from the distributions suggest the Coleman-Liau Index as
a good candidate for discriminating difficulty levels. Given that the seven web
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Figure 6.1: Distributions of six readability scores for seven web sites (y-axes:
kernel density estimates, N=1000, bandwidth=0.2. x-axes: U.S. grade
levels).
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sites truly exhibit different levels of text difficulty, the Coleman-Liau Index seems
to discriminate them well. In addition to that, it is also computationally more
attractive because it does not use syllable counting. Syllable counting is not as
accurate as counting characters. Furthermore it is also slower, which in fact is an
argument, given one is processing such a vast amount of documents as it is the
case in IR.

0 20 40 60 80 100
| | | | | |
\
1 — encarta.msn.com
0.20 R_LIX ) — plato.stanford.edu
—— simple.wikipedia.org
0.15 —— www.astronautix.com
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0.10 - = - www.eoearth.org
0.05 — = = www.newscientist.com
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0.04 —
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T I
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Figure 6.2: Distributions of two readability scores for seven web sites (y-axes:
kernel density estimates, N=1000, bandwidth=0.8 [top, middle], band-
width=0.1 [bottom]).

The distributions of the scores using their own scale each are depicted in
tigure 6.2. The Flesch Reading ease discriminates well between the Encyclopedia
of Earth and Britannica Online. For the other web sites except for the New
Scientist, there is no obvious distinction. LIX seems to work better, showing a
pattern resembling the Coleman-Liau Index. However, LIX puts the Encyclopedia
Astronautica on the same level as Encarta, while the Coleman-Liau Index puts it
more towards the level of the Stanford Encyclopedia of Philosophy.

The Original Dale-Chall Score with its focus on vocabulary load draws a
different picture. In Terms of vocabulary, Encarta and Simple English Wikipedia

59



are close, while all the others are more or less equally ‘harder’, indicating that
they use more vocabulary from outside the Dale list of 3.000 familiar words.

The New Scientist’s website again exhibits its outlying bump in all three
measures shown in figure 6.2.

15

10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
| | | | | | |
encarta.msn.com . A
plato.stanford.edu LFP_GSIlkTypERaUO [

www.astronautix.com
www.britannica.com
+ www.eoearth.org
- = www.newscientist.com

|
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LFP_Gsl2kTypeRatio
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Figure 6.3: Distributions of LFP ratios (types on a word list to all types) for

seven web sites (y-axes: kernel density estimates, N=1000, band-
width=0.005. x-axes: ratio).

More hints about vocabulary are given in the distributions of the Lexical
Frequency Profiles (LFPs) shown in figure 6.3. It is important to notice that
these four distributions are not independent, since the word lists do not overlap.
The ratios displayed can be read as answers to the question: ‘how many types
found in the text were on the word list?” The first 1.000 words of the General
Service List (GSL) cover many types found in the texts, while the second 1.000
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words, the words on the Academic Word List (AWL) and all the rest (off-list) are
approximately equally less-used.

Except for Britannica Online and the New Scientist, all web sites use a lot of
vocabulary from the GSL 1k band. Encarta’s texts draw on GSL 2k band, while the
others are more or less similar there. The more revealing results can be observed
on the AWL band. It shows that Encarta and Simple English Wikipedia use less
academic language than the Encyclopedia Astronautica. Britannica Online, the
Encyclopedia of Earth, and the Stanford Encyclopedia of Philosophy use even
more academic words.

The off-list distribution also gives hints on the word lists themselves: While
the types in the Stanford Encyclopedia of Philosophy and Britannica Online
are found on the AWL and therefore few of them are off-list, the Encyclopedia
Astronautica uses a lot of off-list tokens. This is not so surprising since a lot of
special terms from astronautics are used. It is unclear why Encarta and Simple
English Wikipedia use almost the same amount of off-list vocabulary.

Coming back to the desired borderline between the seven web sites, one can say
with respect to LFPs that the most discriminative figures are produced by the ratio
of types on the AWL. However, the relatively high amount of off-list vocabulary
in Simple English Wikipedia and Microsoft Encarta hint to the direction that there
may be other discriminative vocabulary bands that are covered by none of the
three word lists.

Concluding, we can say that based on the results of our test collection and
the assumption that the seven web sites under investigation contain texts of
different difficulty levels, the Coleman-Liau Index seems to be the most promising
discriminative measure among the traditional readability formulas. Another
interesting candidate among those is the Lasbarhetsindex. Looking at vocabulary,
the type ratio from the AWL in LFPs is a more promising measure than the
Original Dale-Chall Score. However, this must be taken with a grain of salt
since the high amount of off-list vocabulary for certain web sites hint to the
direction that there is something beyond the scope of this measure that must be
investigated.
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7 Related Work

7.1 Text Categorization

Tzoukermann et al. (2003, p. 541) write about technologies related to Information
Retrieval (IR): “Two related technologies include text categorization and question
answering. Text categorization refers to technologies to determine whether a
document is a member of a given category.” While we exclude question answering
from our definition of IR given in section 3.1, we cannot deny that the system
discussed in the presented thesis is related to text categorization (TC).

There are two fundamental paradigms in TC: single-label TC assigns exactly one
category to each document, while multi-label TC assigns any number of categories
to each document (Eichler, 2005). In the early days of TC, people focused on
rule-based approaches with manually defined rules, a strategy that later on was
replaced by machine learning approaches (Sebastiani, 2002).

A remarkable example of a TC approach is presented by Cavnar and Trenkle
(1994): using n-gram profiles of documents of known categories, they successfully
re-categorize test data unknown to the system to those categories. For language
classification, they report an overall classification rate of 99.8%.! In the same
publication, Cavnar and Trenkle discuss the application of their approach to
subject classification. In an evaluation experiment they successfully re-categorize
posts to their original Usenet groups using lists of FAQ as training data.

Joachims (1998) presents an approach of TC using machine learning. He counts
each word with a term frequency of three or more as a feature, with the frequency
being the value. Using a training corpus with known labels, he successfully
re-classifies the test-data by using Support Vector Machines (SVMs).

Coming back to the presented IR system for language learning, one can first
of all say that what we present in fact includes a text categorization system. The
categories are levels of language proficiency required from a reader to understand
a certain text. It is a multi-label system as the borders between a level system
such as Common European Framework (CEF) may be fuzzy. It is also imaginable
to have simple categories such as easy, hard and academic, where most likely hard
and academic will overlap in many documents.

Values for readability scores and other measures can be derived automatically
from annotated documents (cf. sec. 8.2). However, manual intervention is not
unlikely to happen when a query model is created. This allows the manual
merging of categories. For example, if there is a corpus annotated with CEF levels,

!We use an implementation of their approach for language classification in our prototype IR
system, see section 5.2.2.
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we may be able to derive a query model from that automatically. There can be
another corpus that is annotated with information about the appropriateness of
documents (cf. sec. 4.1) for language learners from which we may be able to
derive another component that can be simply added to existing query models.
To conclude: the presented search engine prototype includes a specialized
version of multi-label text categorization that in its final version will use a hybrid
approach consisting of automatic corpus analyses and manually specified rules.

7.2 Similar Approaches

7.2.1 REAP Search

The REAP system described by Heilman et al. (2008) aims at a similar task:
retrieving reading materials that are appropriate for learners. However, there are
some fundamental differences in their work.

Our system is a search engine prototype. A search engine in our understanding
can be used to retrieve data from the Web according to certain criteria. Apart from
a possible choice of websites that are included or excluded from crawling, it is a
tool for freely obtaining information, with certain restrictions made on purpose,
such as returning readable texts or disregarding texts containing profanity.

REAP puts the focus on a different spot: it is used for constructing a digital
library of suitable readings. The ‘books’ in that library are gained from the web
via query-based crawling. They submit queries created from target words to the
AltaVista search engine.? Before a text is presented to the language learner, it
is controlled by a human instructor. The text is then served via a specialized
reading interface that includes further functionality such as displaying dictionary
definitions for words on request. In our scenario, the New WERTi system could
be engaged as a reading interface, given that functions such as dictionary would
be implemented. Web pages could simply not be linked to directly but via WERTi.

The assessment of text difficulty in REAP is done using a machine learning
approach by Collins-Thompson and Callan (2005). This approach focuses on
vocabulary as an indicator for readability. They claim that it is superior to other
readability measures when evaluated with human-assigned difficulty levels. Their
solution seems to be performing well, but it lacks the versatility of our system:
what if the query should ask for documents containing exceptionally many
occurrences of conditionals or gerunds because the learner is supposed to be
confronted with these phenomena in order to learn them? Given an appropriate
analysis of the documents, we can easily construct a query model that filters for
these criteria.

It must be noted though, that the harder the constraints on the documents are,
the larger the document collection must be in order to contain enough documents

2They do not report on the relation of their approach to the bootstrapping of Web corpora, cf.
Baroni and Bernardini (2004).
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that fulfill them. Therefore we are of the opinion that crawling ‘all the web’—or
at least a reasonably large part of it— is superior to creating a digital library.

What REAP does and what our prototype does not is to classify the documents
into topics using a machine learning approach. Heilman et al. used pages listed
and categorized in the Open Directory Project’ as training data. Their system
performs multi-labeled TC on the input documents based on these training
data. Their motivation for doing this classification is that it allows for obtaining
documents on a given topic without specifying a too restrictive textual query.

To summarize: Heilman et al. (2008) present a system that is targeted more
towards classroom use. The reading materials are selected by an instructor
using the REAP Search system and subsequently presented to the students via
a reading interface. Their system bases readability on vocabulary load. Our
system is targeted more towards learners themselves. It aims to allow them to
find whatever information they want—yet at a level that they can understand.
Since our text categorization approach is more versatile, it is also more complex.
However, it comes with the potential to retrieve documents matching a large
variety of criteria of language learning: from vocabulary load (via LFPs) over
general readability (readability measures) up to specific grammatical phenomena
(via parsing, to be implemented, see section 8.1.3).

7.2.2 Read-X and Toreador

Read-X and Toreador are two interacting but independent components introduced
by Miltsakaki and Troutt (2008). Their design is similar to the one of REAP. The
most important difference is that Read-X obtains the texts of interest on-line via
the Application Programming Interface (API) of the Yahoo! search engine*. All
educationally motivated processing is done on-line instead of during indexing
as in REAP or in our system. Toreador includes a function that is similar to
the reading interface described for REAP. For words that are supposed to be
difficult for the reader, Toreador includes a dictionary assistant based on WordNet
(Fellbaum, 1998).

Read-X is able to extract plain text from the formats HTML, PDF, XML, and
Microsoft Word. For assessing the difficulty of text, Miltsakaki and Troutt use the
LIX formula and the Coleman-Liau index (previously discussed in section 2.2).
Furthermore they use the RIX formula by Anderson (1983), which is based on LIX.
Miltsakaki and Troutt conclude that the measures they use have shortcomings
and that more sophisticated measures must be developed. Similar to our goals,
they aim at constructing models of text difficulty consisting of multiple factors.

Their approach of using a commercial search engine reveals certain benefits. The
most salient one probably being that it does not require a centralized crawler and
indexer to be run on a server. Indexing and using Natural Language Processing
(NLP) techniques as done in our system consume much more processing power

3http://www.dmoz.org
4http://de.yahoo.com
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and storage space. Read-X leaves this to the user’s machine. However, it may also
be inconvenient for users to wait until the program has downloaded and analyzed
all hits retrieved from Yahoo!. While controlling the crawling and indexing oneself
is tedious and requires a significant amount of additional expertise, leaving it to a
commercial search engine also means giving control over the delivered contents
to that search engine.
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8 Future Work

The first insights presented in chapter 6 (evaluation) as well as the related
work suggest that there is much more to explore. In particular, our assess-
ment of readability ignores sentence structure. In this chapter, we focus on
possibilities for using syntactic complexity and on the necessary steps that
must be taken in order to assess text difficulty in terms of levels widely used
in educational systems.

8.1 Syntactic Measures

8.1.1 Introduction

The method for assessing reading difficulty in the presented thesis is based on
readability measures and Lexical Frequency Profiles (LFPs). The Original Dale-
Chall Score and the LFPs measure vocabulary load. The other measures try
to assess a general complexity score from surface information such as sentence
length, or word length in syllables or characters. Sentence length and word length
are indicators of syntactic and morphological complexity. Longer sentences are on
average more likely to consist of a more complex syntactic structures than short
sentences. Long words are often more rare than short words, thus they indirectly
hint to the amount of vocabulary load.

From the perspective of language learning, it is desirable to include a more
direct measure of syntactic complexity than the one of counting sentence length.
After all, it seems natural that the difficulty of a sentence depends on the type of
its syntactic constituents, not only on their sheer number. Future work should
therefore investigate how syntactic measures can constitute to the assignment of
general levels of language difficulty to text documents. The following sections aim
at providing a brief selection of relevant existing approaches and at establishing
the relation to the special scenario of language learning.

8.1.2 Measuring Syntactic Complexity

Lu (2009) presents an implementation of 14 different measures of lexical com-
plexity based on previous work by various researchers. These 14 measures are
grouped into five types. An overview is provided in figure 8.1. According to the
definition as used by Lu, a sentence is a group of words ending with sentence-final
punctuation. A clause is “a structure with a subject and a finite verb” and a T-unit
is “a main clause plus any subordinate clauses”. These definitions are based on
Hunt (1965).
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| Type | Measure

Length of production | Mean length of clause

Mean length of sentence

Mean length of T-unit

Sentence complexity | Mean number of clauses per sentence
Subordination Mean number of clauses per T-unit

Mean number of complex T-units per T-unit
Mean number of dependent clauses per
clause

Mean number of dependent clauses per T-unit
Coordination Mean number of coordinate phrases per
clause

Mean number of coordinate phrases per T-unit
Mean number of T-units per sentence
Particular structures | Mean number of complex nominals per clause
Mean number of complex nominals per T-unit
Mean number of verb phrases per T-unit

Table 8.1: Measures of syntactic complexity automatically computed and evaluated
by Lu (2009).

Lu bases his implementation on the Stanford Parser (Klein and Manning, 2003).
After the parsing step, the resulting syntactic trees are examined for subtrees
constituting the units required by the analysis. Lu conducted an evaluation
experiment on ten randomly selected documents from the Written English Corpus
of Chinese Learners, a corpus containing college-level essays by ESL learners.
These ten documents were analyzed by two human annotators. They counted all
relevant units such as clauses and sentences. The system’s performance correlated
with values ranging from r = .896 to r = 1.0 with the human counts.

We found eight of the 21 figures contained in an LFP to be candidates for
assessing the difficulty level of a text (see discussion in section 2.3.2). The question
for our purpose of assessing readability levels to documents now is: which of the
14 measures computed by Lu’s implementation are useful for this intent? The
named corpus is equipped with school level information for each document. Lu
reports on a number of measures that discriminate successfully between school
levels, but apparently there is no measure that puts these levels on a single scale.
As with LFPs, it is fairly possible that a number of these individual measures of
syntactic complexity will be useable in a query model for a given level of language
difficulty. Yet, for another level of difficulty, one may want to use other measures.

In both cases, the question of which measures to use must be subject to future
research. Furthermore, the relation between production and perception remains
subject to discussion in both cases: neither LFPs nor the syntactic measures have
been designed to measure perceptional abilities required from the readers, as
opposed to readability measures.
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8.1.3 Teaching Sequence of Linguistic Structures

There is a sequence or order in which linguistic structures are presented to
learners by language teachers. Since the users of an Information Retrieval (IR)
system for language learning base their abilities on an educational system, it is
worth examining which linguistic forms they are able to handle at which level. To
have such a functionality could greatly improve the usefulness of the system for
school use.

The Revised D-Level Scale by Covington et al. (2006) provides six levels of
language development. Lu (2008) shows that it is possible to measure these levels
automatically. However, there are two issues: first, the D-level Scale is designed
for first language acquisition (FLA). Whether or not the acquisition order of
phenomena agrees with sequences practically used in teaching (second language
acquisition) must be examined carefully. Second, the D-Level Scale again is a
scale for measuring production, not perception.

| Unit | Structures taught |

1 Present perfect progressive with since and for
Past perfect progressive

Attributive use of adjectives after nouns
Adverbs of degree

2 Perfect infinitive with modal verbs
Passive infinitive with full verbs and modals
3 Gerund as subject, object, and after verbs and adjectives with

prepositions

Object plus -ing form

Present and past progressive passive

Passive with verbs with prepositions

4 Verb plus object plus infinitive

Infinitive after question words and after superlatives
Infinitives vs. Gerund

5 Non-defining relative clauses

Participles as adjectives

Table 8.2: Teaching Sequence of Linguistic Forms from a German text book for
English as a second language learners (Weisshaar, 2008).

We suggest to use the sequence of teaching linguistic forms as it is actually
used in educational systems. As an example, the order of forms taught in the
fourth year of ESL teaching according to the corresponding English text book
Weisshaar (2008) is given in table 8.2. The textbook is organized in units. Apart
from readings, exercises, and vocabulary, each unit targets specific linguistic
forms. For example, unit 1 deals with the present perfect progressive, while the
gerund and the progressive passive are dealt with in unit 3. Progressive forms
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require the learner to be able to generally handle -ing forms. With the gerund,
another type of -ing form occurs.!

A limited analysis of linguistic forms could cover the counting of tenses of
verbs in a text. Language courses usually start with the present tense, continuing
with simple future and simple past. Structures such as gerunds and future-
in-the-past are taught at higher levels. Ott and Ziai (2008) have shown the
general possibility to distinguish different types of -ing forms using a grammar
for the vislcg3 constraint grammar parser?, the successor of cg-2 (Tapanainen,
1996) developed by Tino Didriksen and Erhard Bick at Syddansk Universiteit.
While this is a special case because most tag sets and hence most POS taggers
do not make any distinction between gerunds and progressives and other -ing
forms, their implementation as a side-effect also detects going-to future (in the
past), progressive forms, and participles. With an extension to their grammar, the
detection of other tenses should be possible as well.

Once the occurrences of tenses are identified in a text, their ratio to the count of
all verb forms in the text can be computed. Hence there is a single value for each
and every tense, allowing to construct a query model that allows for the retrieval
of documents containing a significant amount of occurrences of the respective
tense. This is of interest to applications such as the New WERTi, which can be
used for the training of specific linguistic forms.

Coming back to the general theme of constructing query models, the detection
of tenses could also help to distinguish levels of text difficulty.

8.2 Mapping Readability to Levels of Language
Difficulty

In order to query for levels of language difficulty using our approach, there
must be a query model for each such level. Since query models can consist of
multiple constraints for readability measures and other automatic judgements,
there are two questions to answer: 1) which are the measures or judgements that
are useful? 2) What are the ranges for these measures that map to a level of
language difficulty?

The answers to these questions can be found using a corpus. For our particular
interest, the documents in this corpus should be annotated with CEF levels. We
foresee two major challenges for the endeavor of creating such a corpus: 1) the
corpus must contain enough text ranging from the simplest to the most advanced
levels. It is likely that it will be an issue to find enough material at the simple
language level. 2) The annotation of CEF levels of text is not discussed in the
key publication (Council of Europe, 2001). A suitable annotation manual must be

1While there are grammarians such as Huddleston and Pullum (2006, p. 1220) who refuse the
existence of a pure gerund, it is used in ESL. Therefore we simply face the facts and adhere to
the gerund.

thtp://giellatekno.uit.no/doc/tools/docu—vislcg3.html
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devised in cooperation with language teachers who know how to judge the level
of a text.

Statistical analyses on such a corpus can be used to infer the ranges in text
models. Furthermore, the reliability of readability measures and other judgments
can be assessed: the ‘good” measures should all be in the same range for each
annotated level. It is likely that some measures are predictive only on high or low
levels. The concept of an underspecified query model allows to use the measure
that is most predictive for a given level.

An additional question to be answered by a large-enough corpus is the one of
how different text types or genres affect readability measures. One can think of
two possible outcomes: either, genres correlate with difficulty as annotated by
humans. That is to say that certain genres are more difficult than other ones. Or
they do not correlate, a case in which readability formulas might turn out to fail
in judging text difficulty reliably across genres.

8.3 Production vs. Perception

Readability measures are supposed to judge the reading difficulty of a text. In
other words, they measure the difficulty of a perceptional task. LFPs are designed
to analyze text written by language learners. Hence they produce information
about the productional abilities of the learner, in particular about the vocabulary
he or she uses actively. Syntactic complexity measures based on the Revised
D-Level Scale as described in section 8.1.2 refer to production as well. Even more,
they aim to reflect the development in FLA. A question to be answered by further
research is how the relation between perception and production is established
in terms of measures. For example, is it safe to use the D-Level Scale to judge
reading difficulty of texts?

As previously mentioned in section 2.3.2, Laufer and Goldstein (2004) have
shown in a study that active and passive vocabulary in learners are correlated. A
small increase in the learner’s active vocabulary implies a large increase of his
or her passive vocabulary. Naturally, the passive vocabulary is what is used in
reading. Therefore it is possible to use LFP as indicators for readability. Of course,
the numbers in the LFP are not comparable to those computed for production.

For the method of measuring syntactic complexity that has yet to be defined for
the purpose of IR for Intelligent Computer-assisted Language Learning (ICALL),
the questions of production vs. perception and perhaps even second language
acquisition vs. first language acquisition must be addressed.
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9 Conclusion

In the presented thesis, we discussed several text difficulty measures and their
automatic application on documents indexed by a search engine prototype. We
have shown a system that serves as a basis for retrieving documents at the profi-
ciency level of a language learner. Such a system can be used in various scenarios,
either simply to provide understandable information, or in an educational envi-
ronment where interesting and up-to-date reading materials can be a benefit over
traditional, constructed texts.

We have found that a combination of text models holding the difficulty scores
as a key-value table and query models formalizing language proficiency levels
in terms of allowable ranges of difficulty scores can be used to create a simple
additional parameter in the search engine’s interface. This simple parameter
reflects a language proficiency level given in a system that the learner is aware
of. We suggest to use CEF levels as they are becoming increasingly popular in
language teaching in Europe.

The measures explored include traditional readability scores as well Lexical
Frequency Profiles (LFPs; Laufer and Nation, 1995). This includes nine traditional
readability measures of which eight are based on surface indicators such as
average sentence or word length, and one is based on vocabulary load. LFPs were
originally designed for measuring active vocabulary, but we found that they also
can be used to measure the required passive vocabulary required from learners
by a text. It is currently unclear which combinations of traditional readability
scores, LFPs, and other yet to be explored measures—such as those of syntactic
complexity—will eventually lead to the successful classification of texts into
the levels specified by the Common European Framework (CEF). Therefore we
suggest this mapping to be investigated in future research.

In a preliminary evaluation experiment, we built a test collection of almost
200,000 unique documents from the Web. From these data, a random sample
of seven online encyclopedias with 1,000 documents each was examined. We
hypothesize that these seven encyclopedias contain language of different levels.
Looking at the text models of these 7,000 documents, we found that of the nine
traditional readability measures under investigation, the Coleman-Liau Index and
the Lasbarhetsindex yield results that are likely to allow the discrimination of the
seven web sites. Concerning vocabulary load imposed on learners as measured
by our specific use of LFPs, we found the ratio of types on the Academic Word
List to all types in the text to be likely to be discriminative.

Related approaches combine the retrieval of documents with a reading interface
that provides supportive functions such as a built-in dictionary. For our approach,
this functionality can be provided by an additional system such as the New
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WERTi (Dimitrov, 2008). Our approach turned out to be a more general text
categorization strategy that is specialized to the determination of text difficulty
levels. Other features of interest in language learning can be implemented using
the presented query model strategy as well. For example, it is imaginable to
find documents that contain a significant amount of occurrences of a linguistic
phenomenon that the learner is to practice in a teaching unit.

Concluding, we can say that we have shown a promising track to follow in
order to provide text at the learner’s level. An important milestones yet to be
reached is the identification of the language proficiency required by a document
in terms of a standardized and widely-used system such as the one of CEF levels.
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A Appendix

A.1 Supplementary Tables and Figures

equired Analyses
Character Count
Syllable Count
Syntactic Analysis

Type Count

Measure/Method vs.

Original Dale-Chall

Flesch Reading Ease
Flesch-Kincaid

Gunning Fog Index

Simple Measure of Gobbledygook
Lasbarheitsindex

Coleman-Liau Index

Automated Readability Index
FORCAST

Lexical Frequency Profiles

«.|| Word List(s)

NSNS

LN NN NN NS N | Word Count

SN N NN NN || Sentence Count

AN

v v

Table A.1: Comparison of measures and methods discussed: the required (lin-
guistic) analyses.
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& TextModel Viewer: http://en.wikipedia.org/wiki/Deep_Purple

In April 1984, eight years aftar the demise of Deep Purple, a full-scale (and legal) reunion took place with the "classic" early 705 line- |~
up of Blackmore, Gillan, Glowver, Lord and Faice. The album Perfect Strangers was released in October 1984, A solid release, it sold
extremely well and included the singles and concert staples "Knockin' &1 Your Baclk Door" and "Perfect 5trangers.” The reunion tour
followed, starting in Australia and winding its way across the world to the US4, then into Europe by the following summer. Financially,
the tour was also a tremendous success, The UK homecoming proved limited, as they elected to play just a single festival show at
Knebworth {with main support from the Scorpions; also on the hill were UFQ, Bernie Marsden's Alaska, Mama's Boys, Blackfoot,
Mountain and Meat Loaf). The weather was bad {torrential rain and &" of mud!), but 80,000 fans turned up amyway. The gig was
callecd the "Return Of The Knebworth Fayre".

The line-up then released The House of Blue Light in 1987, which was followed by a world tour (interrupted after Blackmore broke a
finger on stage) and another live album Mobody's Perfect (1988) which was culled from several shows on this tour, but still largely
based around the by-now familiar Made in Japan set-list. In the UK a new wversion of "Hush" was released to mark 20 wears of the
band. In 1989, lan Gillan was fired as his relations with Blackmore had again soured and their musical differences had widened too
far. His replacement was former Eainbow wocalist Joe Lynn Turner. This line-up recorded just one album, Slaves & Masters (1990)
and toured in support, It is one of Blackmore's favourite Purple albums, though some fans cerided it as little more than a so-called
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Generic_AlICharCount 33379.0
Generic_SentenceCount 425.0
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E_oldDaleChall 6. 978698820815733

Figure A.1: Screen shot of the Text Model Viewer used for debugging.




A.2 List of Abbreviations

AE Analysis Engine

APl Application Programming
Interface

ARI Automated Readability Index
AWL (The New) Academic Word List
BBC British Broadcasting Corporation

CALL Computer-assisted Language
Learning

CAS Common Analysis Structure

CEF Common European Framework
(of Reference for Languages)

DNS Domain Name System

ESL English as a second language
FAQ frequently asked question

FLA first language acquisition

GNU GNU'’s not Unix

GSL General Service List

HTML Hypertext Markup Language

IALS International Adult Literacy
Survey

IBM International Business Machines
Corporation

ICALL Intelligent Computer-assisted
Language Learning

IR Information Retrieval

LFP Lexical Frequency Profile

LIX Lasbarhetsindex

NLP Natural Language Processing
PDF Portable Document Format
POS Part of Speech

SLA second language acquisition

SMOG Simple Measure of
Gobbledygook

SVM Support Vector Machine

TAGARELA Teaching Aid for
Grammatical Awareness, Recognition
and Enhancement of Linguistic
Abilities

TC text categorization

UIMA Unstructured Information
Management Architecture

URI Uniform Resource Identifier
URL Uniform Resource Locator
UWL University Word List

VP verb phrase

WERTi Working with English
Real-Texts: An Intelligent Workbook
for English

WWW World Wide Web

XML Extensible Markup Language
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